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Statistical Approaches to 
Interpretation of Local, Regional, and 
National Highway-Runoff and 
Urban-Stormwater Data

By Gary D. Tasker and Gregory E. Granato
Abstract

Decision makers need viable methods for the 
interpretation of local, regional, and national-highway 
runoff and urban-stormwater data including flows, con-
centrations and loads of chemical constituents and sed-
iment, potential effects on receiving waters, and the 
potential effectiveness of various best management 
practices (BMPs). Valid (useful for intended purposes), 
current, and technically defensible stormwater-runoff 
models are needed to interpret data collected in field 
studies, to support existing highway and urban-runoff-
planning processes, to meet National Pollutant Dis-
charge Elimination System (NPDES) requirements, 
and to provide methods for computation of Total 
Maximum Daily Loads (TMDLs) systematically and 
economically.

Historically, conceptual, simulation, empirical, 
and statistical models of varying levels of detail, com-
plexity, and uncertainty have been used to meet various 
data-quality objectives in the decision-making pro-
cesses necessary for the planning, design, construction, 
and maintenance of highways and for other land-use 
applications. Water-quality simulation models attempt 
a detailed representation of the physical processes and 
mechanisms at a given site. Empirical and statistical 
regional water-quality assessment models provide a 
more general picture of water quality or changes in 
water quality over a region. All these modeling tech-
niques share one common aspect—their predictive 
ability is poor without suitable site-specific data for 
calibration. 

To properly apply the correct model, one must 
understand the classification of variables, the unique 
characteristics of water-resources data, and the concept 
of population structure and analysis. Classifying vari-
ables being used to analyze data may determine which 
statistical methods are appropriate for data analysis. An 
understanding of the characteristics of water-resources 
data is necessary to evaluate the applicability of differ-
ent statistical methods, to interpret the results of these 
techniques, and to use tools and techniques that 
account for the unique nature of water-resources data 
sets. Populations of data on stormwater-runoff quantity 
and quality are often best modeled as logarithmic trans-
formations. Therefore, these factors need to be consid-
ered to form valid, current, and technically defensible 
stormwater-runoff models.

Regression analysis is an accepted method for 
interpretation of water-resources data and for predic-
tion of current or future conditions at sites that fit the 
input data model. Regression analysis is designed to 
provide an estimate of the average response of a system 
as it relates to variation in one or more known vari-
ables.  To produce valid models, however, regression 
analysis should include visual analysis of scatterplots, 
an examination of the regression equation, evaluation 
of the method design assumptions, and regression 
diagnostics.  A number of statistical techniques are 
described in the text and in the appendixes to provide 
information necessary to interpret data by use of 
appropriate methods.
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Uncertainty is an important part of any decision-
making process. In order to deal with uncertainty prob-
lems, the analyst needs to know the severity of the sta-
tistical uncertainty of the methods used to predict water 
quality. Statistical models need to be based on informa-
tion that is meaningful, representative, complete, pre-
cise, accurate, and comparable to be deemed valid, up 
to date, and technically supportable. To assess uncer-
tainty in the analytical tools, the modeling methods, 
and the underlying data set, all of these components 
need be documented and communicated in an accessi-
ble format within project publications. 

INTRODUCTION

Engineers, planners, economists, regulators, and 
others concerned with stormwater runoff from high-
ways and urban areas often develop alternative plans to 
meet demands for desired quantity and quality of water 
at particular locations and times.  Predictive procedures 
are needed for planning, permitting, and design of 
highway structures, as well as design of best manage-
ment practice (BMP) structures (such as swales or 
retention ponds) and BMP maintenance procedures 
(such as street-sweeping programs). Predictive proce-
dures include the development and application of con-
ceptual models, simulation models, empirical models, 
and statistical models.

Any model, to be considered viable, must stem 
from an initial conceptualization of the system of 
concern. A conceptual model is a qualitative under-
standing of the sources and processes relevant to a 
problem. The model, which can commonly be repre-
sented by a diagram, is supported by common sense, 
scientific principles, data, and research to support the 
ideas. For example, expecting total pollutants in runoff 
to increase with increasing average daily traffic at a 
highway site—because vehicles are considered to be 
one of the primary sources of highway pollutants—is 
an example of a conceptual model. Analysis of avail-
able information, however, must substantiate the 
conceptual model to support development of more 
quantitative models through the application of 
empirical, deterministic, and (or) statistical techniques.

Stormwater-quality models have historically 
been used to characterize stormwater flow and quality, 
predict pollutant runoff loads, assess impacts on receiv-
ing waters, and determine the effectiveness of various 
BMPs to mitigate possible impairment of designated 

beneficial uses of receiving waters (Kobriger and 
others, 1981; Shelley and Gaboury, 1986; Driscoll and 
others 1990). Now, and in the future, valid, current, and 
technically defensible stormwater runoff models are 
needed to

• help in interpreting data collected by field studies,
• support existing highway- and urban-runoff planning 

processes (Kobriger and others, 1981, Driscoll and 
others 1990; Young and others, 1996; Granato and 
others, 1998),

• meet National Pollutant Discharge Elimination 
System (NPDES) requirements (Young and 
others, 1996), and 

• provide systematic and economical methods for cal-
culation of Total Maximum Daily Loads (TMDLs) 
(Shoemaker and others, 1997). 

Sound statistical planning models that use data 
collected at monitoring stations representing the region 
of interest can be used to assist policy makers and 
public officials in the evaluations of alternative plans. 
Statistical planning models represent a structured, 
ordered, and quantitative approach. These models can 
provide information for debates over proper choices for 
water-management alternatives and to evaluate com-
petitive alternatives. Statistical planning models are 
needed for quantitative local, regional, or national 
water-quality assessments that can be demonstrated to 
be valid (useful for intended purposes), current, and 
scientifically/technically defensible when based on 
readily available monitoring data, land use information, 
and information about water-quality management 
practices.

The general objective of this paper is to examine 
methods for water-quality modeling and to identify 
and describe statistical methods and procedures that 
may be used to predict concentrations and loads of 
chemical constituents and sediment in highway and 
urban runoff and the potential for effects in receiving 
waters in terms of the unique characteristics of water-
resources data. Although the concentrations, loads and 
potential effects of runoff constituents are often exam-
ined on a site-specific basis, these issues are also exam-
ined within the context of regional and (or) national 
interpretations. This report is designed to provide gen-
eral (and sometimes very basic) information in terms of 
the analysis of water-resources data for stormwater 
analysis, but it is not designed to be a textbook for sta-
tistical methods. Appendixes are provided to expand on 
certain methods discussed in the text, and references to 
2 Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data



    
suggested reading are provided where appropriate. 
Uncertainties in modeling are discussed, as well as the 
quality-assurance and quality-control measures that are 
necessary to address these uncertainties. 

BACKGROUND

Simulation models, empirical models, regression 
models, and other statistical models historically have 
been used as approaches for predicting the quantity, 
quality, and loads of constituents in highway and urban 
runoff. Simulation models are used with model param-
eters that have a direct physical definition in an attempt 
to provide a detailed description of the physical pro-
cesses and mechanisms that affect water quality.  These 
models therefore require a considerable degree of 
detail in the description of the physical system. In sim-
ulation models, parameter estimation is not as data 
dependent as in statistical water-quality assessment 
models. On the other hand, empirical and statistical 
water-quality-assessment models provide a more gen-
eral picture of water quality or changes in water qual-
ity. This picture could be in the form of a map of a 
water-quality statistic, or tables, or simply an equation 
with error bands on the parameters and predictions. 
Statistical regional water-quality models may also be 
used to estimate nonpoint-source loadings as inputs for 
more detailed water-quality simulation models (Ichiki 
and others, 1996). All these modeling techniques share 
one common aspect—the predictive ability of almost 
any model will be poor without suitable site-specific 
data for calibration (Shelley and Gaboury, 1986).

Criteria for model selection depend on modeling 
logistics as much as on data quality objectives (DQOs) 
and other technical considerations (Shoemaker and 
others, 1997). Logistical criteria include

• the availability of hardware and software to imple-
ment the model of choice, 

• the availability of trained modelers to manipulate the 
model, to develop sound input parameters with an 
understanding of how they are used by the model, 
and to critically evaluate model results,

• organizational commitment to establish and support a 
model, to document the model, and to oversee 
subsequent applications of the model so that meth-
ods and results can be reviewed and accepted as 
valid, current, and technically defensible, 

• organizational expertise with the model, to apply the 
model and to review applications of the model to 
maintain credibility of results, and 

• available financial resources to support modeling 
efforts. 

The resources needed to support a modeling effort 
increase in direct proportion to the complexity of the 
model chosen for analysis. A political criterion also is 
involved in the selection and use of modeling methods. 
To implement a successful modeling effort, the various 
interest groups involved in a project must be willing to 
accept modeling results. Even the most successful and 
sophisticated modeling effort will fail if the results are 
not understood and accepted by decision makers 
(Shoemaker and others, 1997).

A detailed description of each available runoff-
quality model is beyond the scope of this report. Neces-
sary information, however, is readily available in other 
publications. Driscoll and others (1990) discuss the 
application of different methods for national analysis 
of highway-runoff quality and related environmental 
effects. Hall and Hamilton (1991) describe many 
aspects of highway-runoff transport modeling. Bedient 
and Huber (1992) describe many of the hydrologic 
simulation models in use today. Young and others 
(1996) provide examples of simulation, empirical, and 
regression models, and the FHWA statistical model as 
applied to individual highway sites. Shoemaker and 
others (1997) provide a comprehensive guide describ-
ing most of the available predictive tools—including 
most applicable simulation, empirical, regression, and 
statistical models—for water-quality assessment within 
the TMDL process.  A brief discussion of simulation, 
empirical, regression, and other statistical models, 
however, will provide information useful for statistical 
interpretation of local, regional, and national highway 
and urban stormwater-quality data.

Simulation models—including SWMM (Huber 
and Dickinson, 1988), STORM (U.S. Army Corps 
of Engineers, 1977), HSPF (Bicknell and others, 
1993), and the Federal Highway Administration 
(FHWA) urban highway storm drainage model (Dever 
and others, 1983)—require detailed site-specific 
information and data to calibrate the model for current 
conditions. By using simulation models, highway 
engineers can evaluate the design of each highway—
including the road surface, catch basins, and drainage 
structures—with respect to flow and water quality (Hall 
and Hamilton, 1991). Simulation models are also 
Background 3



  
useful in estimating relations between variations in 
input parameters and resulting flows, constituent con-
centrations, and constituent loads in runoff. The valid-
ity of these estimates, however, depends upon a robust 
calibration of the model with site-specific data 
(Driscoll and others, 1990). For example, Zarrielo 
(1998) compared results of simulations made with nine 
uncalibrated runoff models to observed flows in two 
urban watersheds; although the modelers had very 
detailed information about site characteristics and pre-
cipitation, the resulting estimates of peak flow rates and 
total stormflow volumes differed from measured data 
by as much as 260 and 240 percent, respectively.  Sim-
ulations are considered to be highly useful in the design 
phase or post construction-analysis phase of specific 
sections of a highway, but collection of the site-specific 
data and the high level of effort necessary to success-
fully implement these models are not practical for plan-
ning or management on a regional or national scale 
(Driscoll and others, 1990).

Empirical models include the U.S. Environmental 
Protection Agency (USEPA) Screening Procedures 
(Mills and others, 1985) and the Simple Method 
(Schueler, 1987). Empirical models involve the use of 
estimated concentrations (presumably derived from 
local studies and (or) the literature) multiplied by some 
fraction of local precipitation volumes (used to estimate 
runoff volumes) to estimate annual or storm loads of 
constituents of concern. Empirical models provide 
order-of-magnitude estimates of loads but do not indi-
cate correlation among variables and do not provide 
estimates of the uncertainty in predictions without 
detailed site-specific data needed to estimate probability 
distributions of the precipitation/runoff volumes and 
concentrations used in the equation. 

Highway-runoff regression models include 
those developed by the FHWA (Kobriger and others, 
1981; Driscoll and others, 1990); State departments 
of transportation in Washington (Chui and others, 
1982), California (Kerri and others, 1985), and Texas 
(Irish and others 1998); and the Ontario Ministry of 
Transportation (Thomson and others, 1996; 1997a). 
These models use information such as precipitation 
characteristics, highway-design features, traffic vol-
umes, and interrelations between measured constitu-
ents to predict concentrations and (or) loads of 
highway-runoff constituents. The USGS regression 
method (Tasker and Driver, 1988; Driver and Tasker, 

1990) uses the percentage of impervious area, rainfall 
statistics, and in some cases the mean minimum 
January temperature to estimate concentrations and 
(or) loads of urban-runoff constituents. This model also 
may be used for estimating highway-runoff quality in 
urban areas (Young and others, 1996).

Other statistical techniques have also been used 
as approaches for prediction of modeling urban- and 
highway-runoff quantity, quality, and loads. These 
techniques use measures of the central tendency of 
available data (such as the mean or median) and mea-
sures of the variability of data (the variance or coeffi-
cient of variation) to predict model outputs and the 
uncertainty thereof. The model formulated by Driscoll 
and others (1990), uses storm event statistics and the 
probability distribution of site event-mean concentra-
tions (EMCs) to estimate runoff volumes, concentra-
tions, and loads in runoff. Driscoll and others (1990) 
then use these loads and the probability distribution of 
streamflow volume at a given site to estimate potential 
dilution in receiving waters. Statistical models that use 
readily available rainfall statistics and water-quality 
data to produce a frequency distribution of concentra-
tions, loads, and potential for receiving-water effects 
are useful because assessments of risk and return 
periods can be calculated (Driscoll and others, 1990). 

The existing FHWA statistical pollutant loading 
and impact model approach described by Driscoll 
and others (1990) is, given appropriate input data, gen-
erally valid for intended purposes. This model uses 
site characteristics and other factors to calculate esti-
mates of runoff volumes, loads, and receiving-water 
concentrations as a probability distribution. This 
model, however, is not designed for scientific or techni-
cal interpretation of study-site data in terms of the 
potential relations between constituents and (or) study-
site characteristics.  Therefore, other statistical 
models are necessary for scientific or technical inter-
pretation of local, regional, and national highway- and 
urban-stormwater data.

Statistical techniques are commonly best suited 
to highway-runoff modeling needs at any scale (local, 
regional, or national). Population statistics and stan-
dard techniques for the analysis of error in predictions 
can be used to assess risk of decision error. Estimation 
of the error in predictions from empirical models or 
uncalibrated simulation models is, in reality, impossi-
ble, because inputs are complex and the effects on the 
4 Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data



      
error of outputs can be multiplicative. Use of simula-
tion models requires a high degree of institutional 
expertise and experience, as well as a substantial mod-
eling effort, for each site of interest. Many simulation 
models are suitable for specific highway applications, 
but the detailed input requirements and extensive mod-
eling efforts required may preclude use for planning-
level estimates. By comparison, use of existing statisti-
cal models minimizes the logistical burdens required 
for model application (Shoemaker and others, 1997). If 
the statistical model used is based on accepted statisti-
cal methods, is formulated from a valid, current, and 
technically defensible data set, and is documented and 
communicated in an accessible format, then these steps 
will ensure that model results will be accepted. The 
existence of a quantitative data set further lends cre-
dence to the acceptability of model results. The com-
plexity of simulation models and the large range of 
reasonable input parameters inherent in the model cali-
bration process can lead to differences in professional 
judgment, which can negatively affect acceptance of 
simulation-model results. Therefore, simple statistical 
models may be preferable to simulation models for 
many highway-runoff modeling needs.

Statistical analysis is also important to the design 
and implementation of highway- and urban-runoff 
data-collection programs that will yield results suitable 
for inclusion in local, regional, and national-synthesis 
efforts. Statistical analysis of available information is 
necessary to help determine the design of the sampling 
effort (random as opposed to systematic), the fre-
quency of sampling, the number of and location of 
sites, and the quality of the resultant data (Averett and 
Schroder, 1994).  For example, Thomson and others 
(1996; 1997b) used an extensive highway-runoff data 
set from Minnesota to determine that EMC samples 
from at least 15 to 20 storms are required to provide 
reasonable estimates of mean total suspended solids, 
total dissolved solids, total organic carbon, and zinc 
concentrations from each study site. Statistical meth-
ods can also be used to design and (or) optimize storm-
water data-collection networks (Tasker and Raines, 
1995). Statistical-analysis techniques are also neces-
sary for the design, implementation, and interpretation 
of quality-assurance and quality-control (QA/QC) pro-
grams necessary to demonstrate that data collected are 
valid (useful for the intended purposes), technically 
defensible, and complete (Jones, 1999).

BASIC STATISTICAL 
CONSIDERATIONS

Proper classification of variables and an under-
standing of the characteristics of water-resources data 
are crucial for interpreting the results of individual 
studies and for combining these results in a regional or 
national synthesis of stormwater-quality data. Classifi-
cation of the different types of variables being used to 
analyze data may determine which statistical methods 
are appropriate for data analysis. An understanding of 
the unique characteristics of water-resources data is 
necessary to evaluate the applicability of various statis-
tical techniques, to interpret the results of these tech-
niques, and to use tools and techniques that account for 
the nature of water-resources data sets. Understanding 
the methods and measures used to determine and ana-
lyze the population structure is also important. When 
necessary (as is common for water-resource and partic-
ularly for stormwater data sets), one must choose 
appropriate methods of data transformation to enable 
use of statistical techniques without violating the statis-
tical assumptions underlying the methods chosen for 
analysis. Therefore, classification of variables of inter-
est, an understanding of the statistical characteristics of 
water-resources data, a familiarity with the population 
structure and basic methods of analysis, and (when 
necessary) selection and proper use of population-
transformation techniques are necessary to form valid, 
current, and technically defensible stormwater-runoff 
models.

Classification of Variables

Classification of variables is useful in several 
ways because the proper method of data analysis often 
depends on variable type. A variable can be classified 
by inherent mathematical structure (discrete or contin-
uous), by statistical objectives of the study (response 
or predictor), and by level of measurement (nominal, 
ordinal, interval, or ratio).

A variable is discrete if there is a gap between 
two successively observable values in which an 
observed value is not possible (for example, an integer 
scale). A variable is continuous if there is always 
another observable value between any two observed 
values (for example, a real number scale). Examples 
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of a discrete variable are the number of floods above 
a threshold, the number of exceedences of a water-
quality standard, or the identification of a group. It is 
not possible to have 3.2 floods above a threshold, 11.7 
exceedences of a standard, or to have a value between 
group A and group B. Examples of continuous vari-
ables are chloride concentration or the number of 
pounds of road salt applied per lane-mile of roadway 
per season. Discrete variables, however, can sometimes 
be treated as continuous if they cover a wide range with 
small gaps between observations. For example, the 
number of days per year with measurable rainfall could 
vary between 0 and 365. Furthermore, continuous vari-
ables may be grouped into categories and treated as 
discrete variables. For example, pH readings may be 
grouped into the categories of low, medium, and high.

A variable may also be classified according to 
the statistical objectives of the study without regard to 
the variable's mathematical structure. A variable that is 
described in terms of other variables in a regression 
model is called the response variable (or the dependent 
variable, or the predicted variable). Variables used to 
describe the response variable in a model are called 
predictors (or explanatory variables, carriers, or inde-
pendent variables). For example, if one wishes to pre-
dict average nitrate concentration at a streamflow site 
on the basis of land-use characteristics of the upstream 
watershed, then average nitrate is the response variable, 
and land-use variables, such as percentage of urban or 
industrial land, would be predictors.

The level of measurement may also be used to 
classify variables. Nominal variables are variables 
whose observed values are labels for different unor-
dered categories. For example, the "type" variable for a 
basin may be 1 for urban or 0 for nonurban. Ordinal 
variables are variables whose observed values are 
ordered with no implication of distance between differ-
ent points on the scale. For example, Driscoll and 
others (1990) classified highway sites as either 
"urban"—average daily traffic (ADT) counts that are 
greater than or equal to 30,000 vehicles per day 
(VPD)—and "nonurban"—ADTs that are less than 
30,000 VPD. Another example of an ordinal variable 
would be the use of the previously mentioned pH cate-
gories of low, medium, and high. Interval variables 
have equal differences between successive points on 
the measurement scale, but the zero point is arbitrary. 
In this case, one can compare differences in observed 

values. An example of an interval variable would be the 
increase in population density since the last census. 
Ratio variables have equal differences between succes-
sive points and a fixed zero. They allow one to compare 
differences in observed values and relative magnitude. 
For example, nitrate concentration measured at several 
monitoring sites in a region could be treated as a 
ratio-scale variable. 

Characteristics of Water- 
Resources Data

The applicability of any given statistical proce-
dure depends directly on assumptions about the charac-
teristics of the data being explored. Results from 
statistical analysis may be meaningless or, even worse, 
misleading if data do not conform to the design 
assumptions of the statistical method used. Therefore, 
one must carefully consider which statistical methods 
are appropriate in terms of the data being evaluated. 
The unique features of water-resources data affect the 
suitability of interpretations made by the application of 
many classical statistical techniques. Pertinent charac-
teristics of water-resources data (Helsel and Hirsch, 
1992; Helsel, 1993; Hirsch and others, 1993), include 
the following: 

• Nonrepeatability—Measurements are usually obser-
vational, not experimental. More specifically, sta-
tistical regularity cannot be demonstrated for 
water-resources data by repeating a controlled 
experiment because exactly recreating the many 
natural and anthropogenic influences that affect 
each measurement is impossible. 

• A lower limit of zero—Negative values are not possi-
ble for many water-resources characteristics. For 
example, negative values for measured precipita-
tion, flow, or constituent concentrations do not 
have meaning.

• Censored data sets—Limits in methods for sample 
collection and analysis cause data to be reported as 
either above or (more typically) below one or 
more reporting limits, which produce a censored 
population of data. 

• Meaningful outliers—Valid measurements that 
are considerably higher or lower than most of 
the measured population are common among 
hydrologic data sets.
6 Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data



      
• Positive skewness—Data sets that are not symmetri-
cal around mean or median values are typical for 
water-resources data sets because the combined 
effects of a lower bound of zero, censoring, and 
meaningful outliers tend to produce data sets in 
which the right tail of the distribution is extended 
and the left tail is truncated.

• Nonstandard distributions—Many statistical tech-
niques are based on the assumption that the data 
(or in the case of regression models, the residuals) 
are normally distributed (the "bell-shaped" curve). 
The nonstandard distributions characteristic of 
water-resources data sets necessitate alternative 
tools for analysis. 

• Autocorrelation—Natural and anthropogenic effects 
tend to cause conditions in which consecutive 
measurements tend to be strongly correlated.

• Interdependence—Changes in one characteristic of 
interest (such as rainfall intensity) cause changes 
in other characteristics (such as measured flows 
and concentrations).

• Temporal variation—Measured water-resources 
characteristics vary cyclically at timescales 
of hours, days, weeks, seasons, years, and 
even decades because of both natural and 
anthropogenic influences. 

Therefore, data sets must be collected in a 
manner that will represent the underlying population 
distribution, and the statistical methods used to charac-
terize the data must be appropriate for populations with 
these characteristics. Ancillary information and meta-
data (information about a given data set, including 
explanatory information and data-quality information) 
pertinent to the statistical characteristics of the sampled 
population need be documented and communicated in 
an accessible format with monitoring-study data to 
support interpretation methods.  

Ancillary data are important to quantify possibly 
confounding variables that may preclude meaningful 
interpretation of data because statistical regularity 
cannot be demonstrated through controlled experi-
ments. For example, Driscoll and others (1990) noted 
the effect of local land use on regression analysis to 
predict the median EMC of zinc from measures of 
average daily traffic on a site-by-site basis. When all 
sites (with average daily traffic greater than 30,000 
vehicles per day) were included, regression analysis 
indicated a small negative slope with increasing traffic 

and an R2 of about 0.04, indicating that EMCs for zinc 
would decrease with increasing traffic but that this rela-
tion was very weak. When one site (which was heavily 
influenced by a local zinc-smelting operation) was 
omitted, however, regression analysis indicated a 
strong positive slope and relatively strong relation 
between increasing traffic volume and increasing 
EMCs for zinc (R2 was about 0.7). In this case, the 
local land use is the ancillary information necessary for 
meaningful interpretation of data based on the assump-
tion that traffic characteristics would affect (if not 
control) zinc concentrations in highway runoff.

The effects of censored data can be especially 
problematic for interpretation of water-quality data. 
Laboratory detection limits change with time, can be 
dramatically different from laboratory to laboratory, 
and may even be different from method to method 
within a laboratory. For example, Garbarino and 
Struzeski (1998) indicate that detection limits for 
total recoverable copper in whole-water samples are 
0.4, 5., and 0.3 micrograms per liter for the graphite 
furnace-atomic absorption spectrophotometry 
(GF-AAS), inductively coupled plasma-optical 
emission spectrometry (ICP-OES), and inductively 
coupled plasma-mass spectrometry (ICP-MS) methods, 
respectively.  A number of methods may be used to 
compensate for the effects of one or more detection 
limits while applying statistical analysis tools to a data 
set (Gilliom and Helsel, 1986; Helsel and Gilliom, 
1986; Helsel and Cohn, 1988; Helsel, 1990; Helsel 
and Hirsch, 1992). These methods of statistical 
analysis require knowledge of the detection limits 
truncating each data set. Detection-limit information, 
however, may not be available. For example, in compil-
ing data to develop a pollutant-loading model, Driscoll 
and others (1990), noted that "it was virtually impossi-
ble to unequivocally determine the actual detection 
limit associated with each pollutant concentration." 
Driscoll and others (1990) could not determine the 
detection limits because this information was not 
explicitly documented in available ancillary data 
and because the data were produced by a number of 
different analytical laboratories over the years 
between the mid 1970's and the mid 1980's. Thompson 
and others (1996) also noted the difficulty in identify-
ing detection-limit data in an extensive highway-
runoff data set (416 storms from four sites monitored 
during 1976–83). Detection-limit artifacts also affect 
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statistical properties of individual data sets. When a 
data set contains values reported as less than one or 
more detection limits an overestimation of central-ten-
dency measures and an underestimation of dispersion 
measures will be caused by truncation of the lower tail 
of the true population (Driscoll and others, 1990). Also, 
because the relative uncertainty in the accuracy and 
precision of individual values tend to increase as 
reported concentrations approach the detection limit, 
the percent error expected for measurements near 
detection limits is much higher than for values well 
within the measurement range of the method of analy-
sis (Granato and others, 1998).

The presence of meaningful high-end outliers 
(actual but extreme values) contributes to the positive 
skew and is a factor producing nonstandard distribu-
tions. High-end outliers represent times when, for 
example, regulatory criteria may be exceeded and the 
health of local ecosystems may be affected. These out-
liers, however, produce a host of potential problems for 
interpretation of data sets assembled for use in a 
regional or national synthesis. 

Certain assumptions and conditions need to be 
considered in terms of the decision to include or 
exclude individual data points or even entire data sets, 
among which are the following:

• It is often assumed that outliers are not meaningful. 
This assumption may be misleading unless docu-
mented QA/QC information indicates problems 
with sample collection, processing, and (or) analy-
sis that would justify elimination of suspect data. 

• An outlier may be meaningful, but it may represent 
the effects of a process that should not be consid-
ered in a synthesis designed to characterize normal 
highway-runoff quality. For example, a chemical 
spill that occurs before or during a runoff-quality 
study may be representative of runoff quality and 
subsequent environmental effects at sites affected 
by spills, but the data may not be characteristic of 
"normal sites." In fact, the rate of substantial spills 
is about 0.0019 incident per lane kilometer per 
year (as estimated from the median of highway 
hazardous-materials incidents and public road 
mileage compiled by U.S. Environmental 
Protection Agency, 1999). Therefore, data from a 
spill site would incorrectly bias a national data set 
unless a sufficient number of sites were monitored 
to properly represent the probability of a spill at 
any given site. In another example, Driscoll and 

others (1990) eliminated data sets from sites 
affected by fallout from the eruption of Mt. Saint 
Helens in Washington State. Although these 
"meaningful outliers" were representative of the 
effects of volcanic eruption on the quality of high-
way runoff, this effect was not deemed suitable for 
estimation of typical highway-runoff quality in the 
United States.

• An extreme outlier may be meaningful and may rep-
resent the effects of a process that should be con-
sidered in a synthesis designed to characterize 
normal highway-runoff quality, but this effect may 
obscure effects of other process-related variables. 
The example of the effect of the highway site 
under influence of a local zinc smelting operation 
indicates the necessity for detailed documentation 
to describe surrounding land use, but this effect 
precludes development of meaningful relations 
between metal concentrations and average daily 
traffic for more normal highway conditions across 
the United States (Driscoll and others, 1990). 

Elimination of outliers is considered a dangerous 
and unwarranted practice for the interpretation of 
water-quality data, unless one has substantial objective 
evidence demonstrating that the outliers are not repre-
sentative of the population under study (Helsel and 
Hirsch, 1992). When statistical tests are used to detect 
outliers, these tests do not indicate that outliers repre-
sent errors; they do indicate that the population of mea-
sured vales is not necessarily a normal distribution. 
Excessive numbers of extreme values may cause sig-
nificance levels of tests requiring the normality 
assumption to be in error. Therefore, use of a test 
requiring the normality assumption will produce inac-
curate results when outliers affect population structure. 
Outliers may have high leverage and thus a strong 
potential for influencing the slope of a regression line 
(Helsel and Hirsch, 1992).  If an outlier is discovered to 
have a strong influence on the slope of a regression line 
(the slope and (or) the correlation coefficient changes 
significantly when the point is omitted), then one must 
determine whether the outlier represents extreme 
values for a single process or if a secondary process 
is characterized by the outlier. Measurement and docu-
mentation of explanatory variables such as precipita-
tion and flow (Church and others, 1999); real-time 
measures of water-quality characteristics such as spe-
cific conductance, pH, temperature, and turbidity 
(Spangberg and Niemczynowicz, 1992; Whitfield and 
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Wade, 1992; Granato and Smith, 1999); use of ratios 
between constituents of interest (Granato, 1996); and 
results from a comprehensive QA/QC program (Jones, 
1999) can be used to identify and explain outliers in 
terms of the potential effect of real physicochemical 
processes as opposed to the effects of sampling 
artifacts. 

The natural and anthropogenic processes con-
trolling runoff quality and the methods for sampling, 
processing, and analysis often cause problems with 
autocorrelation (also referred to as serial correlation or 
correlation—the dependence of residuals in a time 
sequence because data reflect the effects of preceding 
conditions). One of the assumptions inherent in many 
regression techniques is that the residuals are indepen-
dent (Helsel and Hirsch, 1992). Autocorrelation can be 
a problem within stormwater data sets because many of 
the variables used for analysis are pairs of data in a 
time series. For example, precipitation and flow, flow 
volume and concentration, and relations between mea-
sured constituents (total suspended solids and lead, for 
example) may be pairs of data in a time series. Time-
series effects may also occur between subsequent 
storms. For example, Irish and others (1998) indicate 
that the duration, the volume of runoff per unit area, 
and the intensity of runoff per unit area of the preced-
ing storm are significant causal variables in a regres-
sion model developed for highway-runoff loads of 
suspended solids and metals in Texas. Autocorrelation 
can be important because it affects the optimization of 
regression coefficients, affects estimates of population 
variance (invalidating results of hypothesis tests), and 
produces confidence and prediction intervals that are 
too narrow for the real population being sampled. To 
address autocorrelation problems, one may group data 
into time periods and use summary statistics in an anal-
ysis, use methods that are robust with respect to auto-
correlation (Helsel and Hirsch, 1992), incorporate 
explanatory variables into predictive models that will 
account for potential effects of autocorrelation (Irish 
and others, 1998), or subsample from large data sets to 
eliminate autocorrelation.

Temporal variation may also increase variability 
in data and affect the comparability of data between 
sites. Seasonality is an obvious factor that may affect a 
population of stormwater samples at any given site. For 
example Driscoll and others (1990) segregated "snow 
washoff events" from other events for analysis and 
found that, for many constituents, snow washoff events 
had substantially higher median site EMCs, much 

wider confidence intervals, and a relatively few number 
of events than for the rest of the available data. More 
subtle temporal variations may affect relations between 
predictors and response variables and (or) contribute to 
the variability in measured water quality in a popula-
tion of stormwater-quality samples. For example, 
Whitfield and Wade (1992) used results from automatic 
water-quality monitoring stations to detect daily cycles 
in receiving-water quality, as well as the effects of 
storms.  In addition, the magnitude of seasonal varia-
tion would be expected to be a function of local climate 
and may therefore partly obscure relations between 
predictors (such as ADT) and response variables (such 
as constituent concentrations) if a statistical analysis 
includes sites with different patterns of temporal varia-
tion.  For example, Driver and Tasker (1990) used the 
mean minimum January temperature as a predictor 
variable to partly account for differences in the magni-
tude of seasonal variation among sites in an analysis of 
National Urban Runoff Program (NURP) data. 

Population Structure and 
Analysis

Sampling theory—the concept that one can mon-
itor a given number of events and with this information 
estimate the properties of the underlying distribution— 
is based upon the concept of a probability distribution. 
The structure of a given population (the probability dis-
tribution) will determine which methods will be appro-
priate for statistical analysis and interpretation of 
water-resources data. If, for example, measured data fit 
a normal distribution, one measure of location (central 
tendency) and one measure of spread (variability) can 
be used to define the entire population. However, the 
applicability, robustness, and relative power of differ-
ent measures of location, measures of spread, and mea-
sures of skewness depend upon the structure of data 
and the objectives of the analytical process. 

The structure of data is often described by means 
of population-frequency distributions. If variables 
can be ascribed to a particular frequency distribution, 
then the known structure of the distribution has many 
potential uses (Athayde and others, 1983; Driscoll and 
others, 1990; Helsel and Hirsch, 1992), including the 
following: 
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• concisely reporting data in terms of population mea-
sures rather than total range (which may be mis-
leading for data with outliers and multiple 
detection limits),

• examining the characteristics of the data (for exam-
ple, the mean and standard deviation can be used 
to define the location and shape of a normal distri-
bution),

• establishing the probability of any given value in the 
distribution (for example the probability of 
exceeding a water-quality standard), 

• comparing results from different sites on a common 
basis,

• providing a framework for examining the transfer-
ability of data quantitatively, and

• testing hypotheses (for example, establishing 
whether concentrations of metals at sites with an 
ADT of less than 30,000 vehicles per day are sta-
tistically different from concentrations of metals at 
sites with an ADT greater than 30,000 vehicles per 
day). 

The number of potential distributions is infinite (Ott, 
1993). For example, McLaughlin (1999) provides 
equations for the probability distribution and 
cumulative distribution functions for more than 50 
distributions in terms of the location, shape, and scale 
of each distribution. Figure 1 indicates generalized 
shapes of the probability-distribution and cumulative-
distribution functions for the exponential, gamma, and 
normal distributions. Commonly, water-resources data 
can be characterized by relatively few distributions, 
and many of the available distributions are specialized 
variations of more general distributions (Helsel and 
Hirsch, 1992; Ott, 1993). For example, the lognormal 
frequency distribution is simply a normal distribution 
for data that have been transformed to logarithmic 
space so that the resulting distribution approximates 
that of the theoretical normal distribution.

Statistical-analysis methods can generally be 
classified as either parametric (methods in which a 
specified data distribution is necessary to support 
design assumptions) or nonparametric (methods that 
do not depend on a specified data distribution to estab-
lish their meaning).  Nonparametric tests, because 
they are not as dependent on an assumed population 
distribution, may be more robust for data analysis. The 
power of parametric techniques is generally higher 

when the distributional assumptions are correct. In 
many cases, however, the relative advantage of para-
metric techniques decreases with increasing population 
size (Hirsch and others, 1993). 

Statistical measures of population location, 
spread, and skewness are summarized and defined in 
terms of the statistical basis and design assumptions 
that define each method in table 1. Helsel and 
Hirsch (1992) and Hirsch and others (1993) use these 
techniques to describe mathematical information 
for statistical analysis of water-resources data. 
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Figure 1. Example of the generalized shape of the 
probability and cumulative distributions of unitless, 
exponential, gamma, and normal populations.
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Table 1. 

 

Basic statistical techniques for parametric and nonparametric data analysis

 

[N, nonparametric; P, parametric]

 

Technique Measure Basis Definition Comments

 

Arithmetic mean
(Average)

Location P The sum of all data divided by the 
sample size.

Can be affected by the presence of and (or) changes in the 
magnitude of one or more outlying observations. 
Representativeness depends upon the assumption that the 
data are normal (or at least unimodal and symmetric).  

Median Location N The middle value when data are 
ordered from lowest to highest.

When there is an even number of data points the median is 
the average of the two central observations.  The median 
is also refered to as the 50th percentile.

Mode Location N The data value that occurs with the 
highest frequency.

A data set may have more than one modal value. 

Geometric mean Location P The mean of the logarithms of data 
that is transformed back into 
original units.

Representativeness depends on the assumption that the data 
are normal (or at least unimodal and symmetric) in log 
space. 

Trimmed
(or weighted) 
mean

Location P The mean of censored data divided 
by the sample size after 
censoring.

Trimmed means (or weighted) means are computed once 
values judged as outliers have been eliminated (or 
weighted with a value of zero).  It is typical to trim a given 
percentage from the bottom and top of the data in an 
attempt to apply systematic methods.

Range Spread N The difference between the largest 
and smallest measurements in a 
set.

Although nonparametric, the range is affected by the 
presence of and (or) changes in the magnitude of one or 
more outlying observations.   

Variance Spread P The sum of the squared deviation 
of all measurements divided by 
one less than the total number of 
data points.  

The variance can be unduly affected by the value of one or 
more outlying observations.

Standard 
deviation

Spread P The positive square root of the 
variance.

The standard deviation can be unduly affected by the value 
of one or more outlying observations.

Coefficient of 
variation (COV)

Spread P The ratio of the standard deviation 
over the mean.

A measure of spread normalized to the magnitude of the 
mean.

Interquartile 
range (IQR)

Spread N The difference between the 75th 
and 25th percentile values (by 
number of measurements) when 
data are ordered from lowest to 
highest.

Typically used as a measure of central spread because the 
25th, 50th (median), and 75th percentiles split the data 
into four equal-sized quarters (by number of 
measurements). Other percentile ranges may be used as 
well.

Median absolute 
deviation (MAD)

Spread N The median of the absolute values 
of the difference between each 
data point and the data-set 
median. 

The MAD, because it is the median of the population of 
absolute differences, is resistant to the effects of outliers. 

Coefficient of 
skewness

Skewness P The third central moment divided 
by the variance cubed.

A positive value indicates that the population is right-
skewed, and a negative value indicates left skew.

Quartile skew 
coefficient

Skewness N The difference between the range 
of each quartile (25th to 50th 
and the 50th to 75th) divided by 
the IQR

A positive value indicates that the population is right-
skewed, and a negative value indicates left skew.  Other 
percentile ranges may be used as well.



     
An understanding of the assumptions inherent in statis-
tical measures, the methods used to calculated these 
measures, and their sensitivity to changes in location, 
spread, and skewness are important for interpretation 
of results of more complex statistical analysis. For 
example, in the calculation of a simple regression, the 
means and variances of each population of interest 
determine the slope and intercept of the resultant line 
equation (Hirsch and others, 1993). Furthermore, the 
simple measures of population characteristics covary 
with differing population structure.  If a data distribu-
tion fits the normal distribution, then the mean, median, 
mode, and trimmed means should be equivalent if not 
equal (Helsel and Hirsch, 1992; Ott, 1993). If, how-
ever, a population is lognormal, then the geometric 
mean and median should be equivalent if not equal 
(Helsel and Hirsch, 1992). As unimodal populations 
become increasingly skewed to the left or right, the 
mean and trimmed mean will fall increasingly to the 
left or right of the median, respectively, and the mode 
will fall increasingly to the right or left of the median, 
respectively (Ott, 1993). Indices of spread also will 
have unique relations when data are normally distrib-
uted. For example, if data are normally distributed, 
then dividing the range by 4 should produce a value 
approximately equal to the standard deviation because 
about 95 percent of values should lie in the range of 
plus or minus 2 times the standard deviation (Ott, 
1993).

For water-resources data, graphical analysis is an 
essential first step in the interpretation process.  Use of 
graphical analysis can provide a visual summary of the 
data and can help reveal the most appropriate popula-
tion structure and methods for analysis (Helsel and 
Hirsch, 1992). Graphical tools such as the scatterplot, 
the histogram, the boxplot, and the probability plot can 
be used to characterize data and find potential prob-
lems. For example, Driscoll and others (1990) present 
the event-mean suspended-solids concentrations and 
runoff volumes for the I-794 data set from Milwaukee, 
Wisconsin. A scatterplot (fig. 2), a boxplot (fig. 3), two 
histograms (fig. 4), and a probability plot (fig. 5) indi-
cate that event mean suspended-solids concentrations 
are not normally distributed in linear space and that 
runoff volume does not control event mean suspended- 
solids concentrations at this site. Driscoll and others 
(1990) used probability plots to establish that the log-
normal distribution was a sufficiently close approxima-
tion for highway-runoff-quality data to be included in 

their national highway-runoff-quality model. In this 
case, use of graphical analysis helped identify that a 
substantial number of below-detection-limit values 
were incorporated (without special notation) into some 
of the historical data sets and indicated that the below-
detection-limit data did not fit the lognormal probabil-
ity distribution and would affect population statistics 
(Driscoll and others, 1990).  Helsel and Hirsch  (1992) 
provide detailed descriptions about the use of graphs in 
exploratory data analysis (EDA). The National Institute 
of Science and Technology provides text and software 
for mathematical and graphical techniques to approach 
EDA (Croarkin and Tobias, 2000). A number of speci-
fication tests (methods to check that assumptions of the 
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Figure 2. Example of a scatterplot of total runoff volume and 
event mean sediment concentrations from a highway runoff 
monitoring study along highway I-794 in Milwaukee, 
Wisconsin (data from Driscoll and others, 1990).
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estimation method are valid) have been developed in 
recent years and may also be useful for examining 
runoff data before application of statistical-analysis 
techniques (Godfrey, 1988).

Within a discussion of population structure and 
statistical analysis, it should be noted the event mean 
concentration, or EMC, is not a statistical mean based 
on any implied probability distribution; rather the EMC 
is an operational definition used to characterize indi-
vidual storm-event water quality. The EMC is defined 
as the total load of a stormwater-quality constituent 
divided by the total flow that occurs during the storm of 
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Figure 3. Example of a boxplot of total runoff volume and 
event mean sediment concentrations from a highway 
runoff monitoring study along highway I-794 in Milwaukee, 
Wisconsin (data from Driscoll and others, 1990).
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and 100 milligrams per liter) of event mean sediment 
concentrations from a highway-runoff monitoring study along 
highway I-794 in Milwaukee, Wisconsin (data from Driscoll 
and others, 1990).
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interest (Huber, and others, 1979; Driscoll and others, 
1990; Huber, 1993). In theory, an EMC would be 
obtained by collecting and homogenizing all runoff 
from a given event and then sending a representative 
subsample for analysis. In practice, the EMC represent-
ing each storm is determined from analysis of one 
flow-weighted composite sample or from a number of 
discrete samples that are flow-weighted mathemati-
cally (Driscoll and others, 1990; Huber, 1993).  In 

either case, the EMC is not a parametric average, but 
a time- and flow-integrated estimate of stormwater 
quality.

Transformations

The general versatility, power, and mathemati-
cal elegance of parametric procedures designed for 
data that fit a normal distribution are usually advanta-
geous in the application of statistical analysis. Mathe-
matical transformations (used to redistribute 
population characteristics to approximate a normal 
distribution) are often employed to facilitate the use of 
normal (parametric) statistical-analysis techniques. 
Transformations are usually made for one or more of 
the following reasons: to simplify the model; to stabi-
lize the variance; to normalize the data; or, for regres-
sion analysis, to define a transformed model with error 
distributions that fit the assumptions of the model. For 
regression models, transformation of the response 
variable is often desirable if the response variable is 
nonnegative and the range of observed values is one or 
more powers of 10. Log transformations are often 
useful for minimizing the standard error of the esti-
mate (Driver and Tasker, 1990). If all the values are far 
from zero and the range of values is relatively small, 
however, transformation will have little effect. Non-
parametric methods are generally invariant to mea-
surement scale, so transformations do not alter data 
with respect to these methods (Helsel and Hirsch, 
1992). 

Transformations typically improve the symme-
try of data by means of a mathematical function 
designed to alter the distance between observations on 
a line plot. The goal is to expand or contract the dis-
tance between the median and extreme values in the 
population of interest. Power functions (in which the 
transformed variable is raised to an exponent) and loga-
rithms (natural and base 10) are usually used to trans-
form data (Helsel and Hirsch, 1992). To reduce 
negative (left) skewness, powers of greater than 1 are 
used. To address positive (right) skewness powers less 
than 1 (the square or cubed roots) or logarithms are 
used.  
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Figure 5. Example of a probability plot of event mean sediment 
concentrations from a highway runoff monitoring study along 
highway I-794 in Milwaukee, Wisconsin (data from Driscoll and 
others, 1990).
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Logarithmic transformations are especially 
useful for normalizing values that vary by orders of 
magnitude, and they dampen the effect of very large 
outliers on statistical estimators. In addition, the stan-
dard error of the transformed population can be 
expressed as a percent error when transformed back 
into original space. Logarithmic transformations, how-
ever, increase the relative weight of small data values 
and can magnify uncertainties in the true (or assigned) 
value of concentrations near detection limits (Stedinger 
and others, 1993). 

Historically, populations of urban- and highway-
runoff data can be characterized by the log-normal 
distribution (Athayde and others, 1983; Driscoll and 
others, 1990). EMCs of highway-runoff constituents 
indeed vary by more than one and as much as four 
orders of magnitude at and between sites. For example, 
Smith and Lord (1990) report that total suspended 
solids concentrations range from 4 to 1,156 mg/L 
(milligrams per liter), total organic carbon concentra-
tions range from 5 to 290 mg/L, zinc concentrations 
range from about 0.01 to 3.4 mg/L, and chloride con-
centrations range from 5 to 13,300 mg/L. Driscoll and 
others (1990) used the natural logarithmic (ln) trans-
form to normalize data used to develop their national 
highway-runoff-quality model. Athayde and others 
(1983) also indicated that urban-runoff data collected 
for the National Urban Runoff Program (NURP) gener-
ally could be characterized by use of the lognormal dis-
tribution. Thompson and others (1996) examined the 
effects of logarithmic and exponential transformation 
on the R2 of various regression models designed to pre-
dict constituents from surrogate parameters; they found 
that these transformations demonstrate the best expla-
nation (highest R2) for the water-quality predictor vari-
ables but that untransformed models worked best for 
the constituents predicted by traffic volume. Driscoll 
and others (1990) graphically compared the probability 
distribution defined by the mean and standard deviation 
of the transformed population with individual points in 
the data set and tested the fit by means of the probabil-
ity plot correlation coefficient (PPCC) test (Vogel, 
1986). In that study, the lognormal distribution was 

found to be a satisfactory model for most runoff 
constituents at most runoff sites (Driscoll and others, 
1990). 

Athayde and others (1983) examined the mathe-
matical properties of the lognormal distribution in 
terms of the ratio of the mean and percentile values in 
relation to the median as a function of typical coeffi-
cients of variation (COV; the ratio of the standard devi-
ation to the mean). For a population with a COV of 1, 
the mean would be expected to be about 1.4 times the 
median, 90 percent of the data would fall in a range 
from about 0.25 to 3.9 times the median, and the inter-
quartile range (about 50 percent of the data) would fall 
in a range from about 0.6 to 1.7 times the median 
(fig. 6). Historically, COVs of highway- and urban-
runoff-quality constituent populations have ranged 
from about 1/4 to about 3, with typical values that are 
about 1 (Athayde and others 1983; Driscoll and others, 
1990). 

Mathematical properties of transformations may 
introduce error into the interpretation process if these 
properties are not properly addressed. When using log-
arithmic and exponential transformations, one must 
realize that statistical values such as the mean and stan-
dard deviation need to be calculated within the trans-
formed data and then translated to original units 
(Helsel and Hirsch, 1992).  Specifically, parametric sta-
tistics such as the mean and standard deviation cannot 
be transformed and subsequently used to estimate pop-
ulation characteristics in linear space. For example, the 
lognormal suspended-solids EMC population from the 
I-794 Milwaukee Wisconsin site described by Driscoll 
and others (1990) has a geometric mean of about 140 
and a 95-percent confidence interval from about 40 to 
about 510. The standard deviation and COV (trans-
formed from logarithmic space), however, are only 
about 1.9 and 1.3, respectively. It is apparent, therefore, 
that confidence-interval values must be calculated in 
log space and then transformed. Nonparametric statis-
tics such as the median and quartiles, however, may be 
taken directly from the original or transformed data set 
because these statistics are associated with individual 
values in the data set. 
Basic Statistical Considerations 15
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Figure 6. 

 

 Properties of the lognormal (natural logarithm) distribution as a function of the population 
coefficient of variation (COV) modified from Athayde and others (1983).



    
Mathematical artifacts introduced by use of log 
transformation in regression analysis may also affect 
the predictive ability of resultant models. Transforming 
an unadjusted log-regression equation back into linear 
space (the original units, for example, milligrams per 
liter of suspended sediment) provides a median (the 
geometric mean) estimate, not a mean estimate of con-
centrations and (or) loads (Helsel and Hirsch, 1992). 
Ferguson (1986) summarized the problem in the con-
text of estimating river loads from flow and concentra-
tion data and proposed a method for a bias correction 
factor (BCF). The BCF is a multiplicative term 
included in regression models that are formulated in 
logarithmic space and then transformed into original 
units; it is designed to prevent underestimation of con-
centrations or loads as an artifact of transformation. 
Further research indicates that several methods may be 
used to estimate a BCF and that a nonparametric 
method developed by Duan (1983) generally provides 
reasonable estimates for a BCF that is not affected by 
the structure of the data (Driver and Tasker, 1990; 
Helsel and Hirsch, 1992). Driver and Tasker (1990) 
used the Duan (1983) method to estimate BCF for 
storm-runoff loads, volumes, and selected constituent 
concentrations from NURP data and calculated BCFs 
that ranged from about 1.1 to 2.8 for their runoff 
models. 

In the construction of regression models, the 
Box-Cox transformation (Box and Cox, 1964) can be 
used to stabilize variance and correct for nonnormality 
of a strictly positive response variable. John and Draper 
(1980) define a transformation that can be used when 
the response variable is not strictly positive. Aranda-
Ordaz (1981) and Guerrero and Johnson (1982) define 
transformations that can be used when the response is 
binary (0 or 1) or a proportion between 0 and 1. For 
multiple regression models, a graphical device that can 
be helpful in deciding on a transformation for a predic-
tor is a partial residual plot (Larsen and McCleary, 
1972) in which the partial residuals (computed by 
taking the difference between the observed value and 
the components of the predicted value that exclude the 
variable of interest) are plotted against the predictor of 
interest. If the plot looks linear, no transformation is 

needed. If the plot shows some curvature, a transforma-
tion may be helpful. The practice of transformation 
optimization (finding the perfect root or power for 
transformation), however, is not encouraged because it 
is never known how well a sample represents the 
underlying population, and a generalized transforma-
tion that works reasonably well for all data of interest is 
better than multiple, slightly different transformations 
for each data set (Helsel and Hirsch, 1992). Alterna-
tively, one may use other methods such as White's 
Specification Test, which is done by regressing squared 
residuals on the predictor variables and cross-products 
of the predictors. In this test, a significant regression 
implies that the specification is wrong or that het-
eroscedasticity of the residuals is related to the 
predictors (White, 1980).

REGRESSION ANALYSIS

Regression analysis is an accepted method for 
interpretation of water resources data and for predic-
tion of current or future conditions at sites with charac-
teristics that fit the input data model. The FHWA, State 
departments of transportation, and watershed managers 
need models to interpret data; predict runoff volumes, 
concentrations, and loads; and predict potential effects 
of runoff on receiving waters at sites for which data do 
not exist. In the following discussions, it is assumed 
that the purpose of the regional regression is for inter-
pretation of data and for prediction of future responses, 
including possible extrapolation (that is, prediction out-
side the range of the sample data). If the regression 
model is not a reasonable representation of reality, then 
extrapolation could be erroneous. The purpose of the 
regression analysis will influence how predictors are 
selected for the regression model. Therefore, in select-
ing predictors for a possible regression model, one 
should choose variables that have a physical basis for 
explaining variations in the response, and the final 
regression coefficients should have a logical algebraic 
sign. 

Historically, regression analysis was used for 
interpretation and prediction in several studies that rep-
resent the primary efforts for regional and (or) national 
Regression Analysis 17



            
characterization of highway runoff in the United States 
(table 2). To date, five studies (Kobriger and others, 
1981; Chui and others, 1982; Kerri and others, 1985; 
Driscoll and others, 1990; Thompson and others, 1996) 
represent regional analysis of highway-runoff flow and 
quality based on data collected during the 1970's and 
early 1980's. Additionally, Young and others (1996) 
identified the urban-runoff regression equations devel-
oped by Driver and Tasker (1990)—identified as "the 
USGS method"—as applicable for estimating high-
way-runoff quantity and quality (table 2). The USGS 
method was developed from NURP data collected 
throughout the United States during the 1970's and 
early 1980s, but it does not include highway runoff as a 
specific land use. More recently, Irish and others (1996; 
1998) interpreted data collected in the 1990's using 
regression analysis, but they were clear that these equa-
tions and related interpretations may be valid only in 
the local Austin, Texas, area. Typically, for all the 
models featured in table 2, runoff data from a substan-
tial number of storms at a number of sites were com-
pared to predict runoff coefficients, stormflow volume, 
constituent EMCs, storm loads, and (or) annual loads 
from a number of explanatory variables. These 
response variables are predicted from runoff constitu-
ents, hydrologic variables, highway-design features, 
land-use characteristics, and climate (table 2).  Tasker 
and Driver (1988) used both ordinary and generalized 
least-squares regression methods. The highway studies 
featured in table 2, however, were limited to ordinary 
least-squares regression analysis.

The Analytical Process

Regression analysis is designed to provide an 
estimate of the average response of a system as it 
relates to variation in one or more known variables.  
Regression equations are often derived by use of com-
puter programs that calculate the regression parameters 
and provide an estimate of the correlation coefficient 
(R2— the proportion of the variability in the dependent 
variable explained by the predictor variable) without an 
investigation of the validity of the selected model. 
When this exercise yields a correlation coefficient that 
is close to 1, then it is often assumed that a good 
regression model has been selected. Many factors may 
produce high but invalid correlation coefficients. 
Regression analysis, therefore, should include visual 

analysis of scatterplots, examination of the regression 
equation, evaluation of the method design assumptions, 
and regression diagnostics (Helsel and Hirsch, 1992).

Examination of scatterplots is necessary to 
examine the relations between predictor and response 
variables and to assess response variability (Helsel 
and Hirsch, 1992). Scatterplots of interest include 
graphs of the response as a function of each predictor 
variable and graphs of the residuals as a function of 
predictor variables. For most regression methods, 
one must ensure that a linear relation exists between 
predictor and response variables. If relations are not 
linear, other, more linear predictors may be chosen; or 
as previously discussed, transformation methods may 
be used to increase the linearity of relations between 
variables.  For some regression methods, one must 
determine whether the variability in the response vari-
ables is also a function of the magnitude of the predic-
tor. Transformations are also used to reduce or 
eliminate problems of nonconstant variance.  Partial 
residual plots (described in Appendix 1A) and the 
White Specification Test (White, 1980) are often useful 
in determining the appropriate transformation on the 
basis of the structure of residuals. 

Often, it is also prudent to examine the effect of 
seasonality on highway- and urban-runoff data by use 
of scatterplots of each variable of interest and the 
regression residuals during the monitoring period. If 
seasonality exists, then explaining and quantifying this 
factor may increase the linearity in response to other 
predictors by removing seasonality from the response 
variable. Methods for quantifying seasonality are 
described in Appendix 1B. 

Examination of the regression equation ensures 
that the model is logical, useful, and quantitative 
(Helsel and Hirsch, 1992). In a logical regression 
model, the coefficients will have a sign and magnitude 
that can be explained by a reasonable scientific hypoth-
esis.  When explanatory variables in a multiple regres-
sion equation covary, this multicollinearity will cause 
some predictors to have illogical values and (or) sign 
(Helsel and Hirsch, 1992).  Methods for analysis of 
multicollinearity are described in Appendix 1C. 

Regression statistics also provide information 
about the suitability of the model. Examination of the 
regression equation includes interpretation of the corre-
lation coefficient to determine whether the resulting 
equation explains much of the variance in the data. 
18 Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data
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Table 2.

 

 Documented metadata for selected reports that document highway-runoff regression analysis
Reference
Year of data 
collection

Location/ environmental setting Seasonality
Number of 
samples

Number
of sites

Model Output

Chui and others, 1982 1979–81 Washingon: eastern (semi-arid) and 
western (wet)

Winter sanding events considered 500 9 OLS SL, AL

Driscoll and others, 1990 1976–84 National: 8 sites in Washington, 3 sites 
each in California and Wisconsin, 2 
sites each in Florida, Minnesota, 
Pennsylvania, and 1 site each in 
Arkansas, Colorado, North 
Carolina, and Tennessee

Separated storms into snowmelt and 
nonsnowmelt events

Used site 
median 
EMCs 
from 
about 900 
storms

24 OLS Q, RC,
EMC

Driver and Tasker, 1990 1977–83 30 urban areas nationwide in 3 regions 
designated by precipitation statistics

Developed equations for seasonal and annual 
loads

2,813 173 OLS
GLS

Q,EMC,
SL,AL

Irish and others, 1998 1993–95 Austin, Texas (semi-arid) Date of storm and temperature were not 
significant

58 1 OLS SL

Kerri and others, 1985 1975–81 California (arid to semi-arid) ND ND 3 OLS SL

Kobriger and others, 1981 1976–77 National: 3 sites in Wisconsin (humid), 
and 1 site each in Pennsylvania 
(humid), Tennessee (humid), and 
Colorado (arid)

Deicing mentioned but not quantified 159 6 OLS Q, QD, SL

Thompson and others, 1996 1976–83 Minnesota Classified storms as rainfall, snowmelt, or 
mixed

416 4 OLS Q, EMC
[A, area; ADP, antecedent dry period duration; ADT, average daily traffic; Al, aluminum; 
AL, annual loads; AP, annual precipitation; ATC, antecedent dry period traffic count; As, arsenic; 
B, boron; BODx, biochemical oxygen demand; Cd, cadmium; Cl, chloride; COD, chemical oxy-
gen demand; Cr, chromium; Cu, copper; D, storm duration; DQ, discussed qualitatively; DP, dis-
solved phosphorus; DS, dissolved solids; EMC, event mean concentration; Fe, iron; FR, filterable 
residue (similar to TSS); GLS, generalized least squares regression; Hg, mercury; HT, highway 
type (indicating the degree of urbanization and (or) impervious area); I, storm intensity (flow 
divided by duration); IA, impervious area; OG, oil and grease; OLS, ordinary least squares regres-
sion; LR, TSS loading rate by climate; LU, land use; MJT, mean January temperature; N, total 
nitrogen; Na, sodium; ND, not documented; NFR, nonfilterable residue (dissolved solids); 
NOx, nitrate and (or) nitrite; Ni, nickel; P, precipitation volume; PA, pollution accumulation rate; 
Pb, lead; PD, population density; PDUR, preceding storm duration; PI, preceding storm intensity; 
PQ, preceding stormflow; Q, stormflow; QD, stormflow duration; RC, runoff coefficient; 
SL, storm loads; SO4, sulfate; SS, suspendid solids; TDS, total dissolved solids; TKN, total 
kjeldahl nitrogen; TOC, total organic carbon; TP, total phosphate; TR, total residue (similar to total 
solids); TS, total solids; TSS, total suspended solids; TVS, total volatile solids; VDS, vehicles 
during storm; VSS, volatile suspended solids; Zn, zinc; *, indicates that different equations were 
developed for different categories or a unified equation was developed with this variable as a 
nominal variable]
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Table 2. Documented metadata for selected reports that document highway-runoff regression analysis—Continued

Reference

 Response variables Predictor variables
Uncertainty of 

estimatesRunoff constituents
Hydrologic 
variables

Runoff
constituents

Hydrologic 
variables

Highway
characteristics

Land
use

Climate Other

Chui and others, 1982 TSS RC VDS LR* Mean: ~200%
Range: 0.3–

1,650%
COD, Cu, NOx, Pb, TKN, TP, TOC, 

VSS, Zn
TSS ADT ND

Driscoll and others,
1990

Q, RC P QD Yes

RC Percent 
impervious

Yes

BODx, Cd, Cl, COD, Cr, Cu, Fe, Hg, 
NOx, OG, Pb, TOC, TP, TKN, TS, 
TSS, VSS, Zn

ADT, HT*

Driver and Tasker, 1990 Q P IA R*, AP A Yes

Cd, Cu, COD, DP, DS, N, Pb, SS, TKN, 
TP, Zn

P, D, I A, IA,
LU

R*, MJT Yes

Irish and others, 1998 BODx, COD, Cu, Fe, NOx, OG, Pb, 
TP, TSS, VSS, Zn

ADP, D, 
I, PDUR, 
PI, PQ, Q

VDS, ATC Yes

Kerri and others, 1985 COD, FR, Pb, TKN, Zn VDS Yes

COD, NFR, Zn TR Yes

Kobriger and others, 
1981

Q ADP, P HT* DQ

QD D, ADP* HT* DQ

PA ADT DQ

TS I HT* DQ

BODx, Cd, Cl, Cr, Cu, COD, Fe, Hg, 
Pb, TKN, TOC, TP, TSS, TVS

TS HT* DQ

Thompson and others, 
1996

Q P

Al, As, BODx, Cd, Cl, COD, Cr, Cu, 
Fe, Hg, N, Na, Ni, NOx, Pb, SO4, 
TKN, TP, Zn

TDS, TOC,
TSS, TVS

ADT Examine 
potential 
leverage of 
outliers

TDS, TOC, TSS, TVS ADP, D, 
I, P, Q

ADT ND
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Table 2. Documented metadata for selected reports that document highway-runoff regression analysis—Continued

Reference Comments

Chui and others, 1982 The regression equations provided adequate estimates of the central tendency of all storm loads, but were not accurate for predicting individual storm 
loads.

Driscoll and others, 1990 Regression analysis was used to examine factors that influence highway runoff characteristics. It was determined that there were not enough sites with 
consistent explanatory variables to quantitatively explore the effects of climate, atmospheric deposition, configuration, pavement (composition, 
quantity, or condition), design geometrics, right-of-way characteristics, drainage features, vehicle characteristics, maintenance practices, regulations, 
or surrounding land use characteristics.

Driver and Tasker, 1990 Flows and loads during individual storms, seasons and years were predicted for a number of constituents as a planning tool rather than for 
interpretation of cause and effect relations. Explanatory variables that would be readily available for planning purposes on a regional scale were 
used.  Highways, as an individual land use, were not included in the analysis.

Irish and others, 1998 Regression analysis indicated that over 90 percent of the variation observed for most constituent loads may have been explained by in-storm-, 
antecedent dry period-, and preceding storm-variables. Date and time of storm, temperature, wind speed, and wind direction were not statistically 
significant predictors. Traffic mix, surrounding land use, curb height, guard-rail height, and maintenance activities could not be evaluated.

Kerri and others, 1985 ADP and ATC showed no statistical significance. B, Cd, NOx, OP, OG, TP, and TR cannot be estimated from explanatory variables

Kobriger and others, 1981 Sites were classified into 3 groups for regression: Type I—urban elevated bridge deck; Type II—curbed highways; and Type III—rural highways with 
flush shoulders. Equations were developed to estimate runoff volume, runoff duration, constituent accumulation during an ADP, pollution washoff, 
and constituent loadings (as a function of TS).

Thompson and others, 1996 Surrogate parameters were established to estimate most constituents. Also, models to predict surrogate parameters were developed. Additional data sets 
that were not used in the formulation of the model, were used to test and verify applicability of the models.



                
There is no general rule of thumb to determine a mini-
mum acceptable correlation coefficient, but the risk of 
posing the wrong model must be considered in relation 
to the ability of the model to explain variance (Helsel 
and Hirsch, 1992). The t-ratio (the value of the estimate 
divided by the standard error of the estimate) also is a 
useful statistic. The t-ratio will usually indicate the sig-
nificance of each coefficient so that the analyst can 
ensure that an apparent relation did not arise by chance 
when there is no real linear relationship. For OLS 
regression, t-ratio statistics that have an absolute value 
greater than 2 are generally considered to indicate a 
statistically significant non-zero relation between indi-
vidual predictors and response variables (Helsel and 
Hirsch, 1992).  

Regression diagnostics include methods 
designed to determine whether the equation posed as a 
model is dominated by a few outliers in the data set. An 
analyst can use regression diagnostic methods to find 
influential observations and study their effects. Exami-
nation of a scatterplot of the residuals will often iden-
tify the effect of outliers when there is only one 
predictor variable, but influential outliers are more dif-
ficult to recognize in plots from multiple regression 
analysis. Typical problems that affect the validity of 
regression models are curvature, outliers, and high-
leverage points. Outliers, observations (or a subset of 
observations) that appear to be inconsistent with the 
remainder of that set of data, are fairly common in 
hydrologic data (Hirsch and others, 1993). Outliers 
should be checked for possible gross errors in measure-
ment or mistakes in recording the observations, but 
rejecting them out of hand is not a prudent practice. 
Regression diagnostics are discussed further in 
Appendix 1D. 

Linear Regression Methods

As previously discussed, water-resources data—
and in particular, populations of urban- and highway- 
stormwater data—have statistical properties that 
require special treatment. Predictive modeling and 
interpretation of cause and effect relations of runoff 
quality and quantity may benefit from use of tech-
niques applied in other water-resources studies. Some 
of the techniques and practical alternative methods for 
dealing with the realities of hydrologic data are dis-
cussed in the following sections. Applicable methods, 
classification of appropriate response and predictor 

variables, and general purpose and assumptions of each 
method are listed in table 3 with a reference to appen-
dix that describe some mathematical details for each of 
the methods discussed. This table, which distinguishes 
among several statistical methods discussed herein on 
the basis of the type of data involved, can serve as a 
rough guide to help the researcher choose a method for 
study.

A method often used for predicting water quan-
tity and quality is ordinary-least-squares (OLS) regres-
sion (Haith, 1976; Lystrom and others, 1978; Peters, 
1984; Driver and Tasker, 1990; Irish and others, 1996; 
Jordan and others, 1997). The OLS model, however, 
requires several restrictive assumptions about the 
parameters and errors in the model, which are often not 
valid for hydrologic data. To fully implement OLS 
regression, one must demonstrate that the response 
variable (or the transformed values) is linearly related 
to predictors (or the transformed values), the data used 
to fit the model are representative of the population of 
interest, the variance of the residuals is constant, the 
residuals are independent, and the residuals are nor-
mally distributed (Helsel and Hirsch, 1992). Normally 
distributed errors are required, even with large samples, 
for the determination of prediction intervals - although 
certain empirical methods allow one to generate robust 
prediction intervals from OLS-determined residuals. 
Appendix 2A more fully describes the OLS regression 
model. 

In some cases, transformations either may not 
adequately transform the error structure to fit the 
required distributional assumptions or may be undesir-
able because of the possible transformation artifacts 
(Helsel and Hirsch, 1992). Nonparametric regression 
provides a distribution-free alternative to OLS regres-
sion that does not require errors to be normally distrib-
uted. Nonparametric regression can refer to models 
with a prespecified functional form but with an unspec-
ified error distribution or models with neither a pre-
specified functional form nor error distribution. 
Appendix 2B contains more details.

Stormwater data often include outliers, which 
may or may not be meaningful. Although it is often 
imprudent to remove outliers, they often exert a lever-
age that will limit the accuracy and precision of regres-
sion results for the bulk of data included in the 
regression model. Robust regression procedures deal 
with outliers by reducing their influence without neces-
sarily rejecting them entirely from the analysis. In one 
sense, regression diagnostics and robust regression 
22 Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data



       

Table 3.

 

 General guide to regression methods

 

Method
Response

classification
Predictor

classification
General purpose and assumptions Appendix

 

Ordinary least- 
squares 
regression

Continuous Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Errors are independent and identically distributed with no 
outliers. Normality of errors is required for hypothesis 
testing.

2A

Nonparametric 
regression

Continuous Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Error distribution unspecified. Functional form may or 
may not be specified. Useful when errors are not 
approximately normally distributed.

2B

Robust 
regression

Continuous Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Useful for detecting outliers and highly influential 
observations. Fits main portion of data, giving outliers 
little or no weight.

2C

Generalized 
least-squares 
regression

Continuous Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Errors can be correlated and variances of errors may be 
different. Useful when observations of  response variable 
are not independent or not measured with equal accuracy.

2D

Tobit regression Part continuous, 
part nominal

Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Useful when response variable is censored below a 
detection limit.

2E

Logistic 
regression

Nominal Usually continuous but 
nominal can be used 
in addition

Predicts probability of response being in one category or 
another.

2F

Contingency 
tables

Nominal Nominal or ordinal 
groups

Describes the relation between nominal response and 
nominal or ordinal predictors.

2G

Ridge regression Continuous Usually continuous but 
nominal can be used 
in addition

Describes the relation between response and predictors. 
Useful when predictors exhibit high multicollinearity. 
Regression coefficients are biased.

2H

SPARROW Continuous Continuous Nonlinear regression method to predict water quality for a 
stream reach based on spatially referenced predictors. The 
predictors are a function of the point and nonpoint sources 
and their location relative to the stream reach.

3A

Artificial neural 
networks

Continuous or 
nominal

Continuous or nominal Flexible nonlinear nonparametric model for prediction. Any 
underlying model or functional relations may be 
impossible to extract. Data-in / predictions out black box.

3B
have the same goal of detecting outliers, but they 
approach the problem from different ends. Diagnostics 
use the classical fit of data to detect outliers and influ-
ential observations, whereas robust regression fits most 
of the data and detects outliers by their large residuals 
from the robust model. Robust regression techniques 
are discussed further in Appendix 2C.  Some of the 
nonparametric methods discussed in Appendix 2B 
(Kendall-Theil and LOWESS smooth) also can be 
resistant to outliers (Helsel and Hirsch, 1992).

In analysis of stormwater quality, observations 
may not be independent in time and space. For exam-
ple, Irish and others (1998) noted the effect of the 
volume, intensity, and duration of storm rainfall char-
acteristics on the water quality measured during the 
next storm event. In using OLS regression, one 
assumes that observed values of the response variable 
are independent, resulting in independent residuals. In 
cases where this assumption is not approximately true, 
estimated generalized least-squares regression (GLS) 
can be used if the dependence of the residuals can be 
Regression Analysis 23



                
estimated from the data. For example, Tasker and 
Driver (1988) and Tasker and Raines (1995) show that 
when the observed response in a regional regression to 
estimate mean annual loads is obtained from at-site 
rainfall-load models, responses may have nonconstant 
errors and correlated errors. Appendix 2D describes 
one estimated GLS regression approach.

As previously mentioned, concentrations of 
water-quality constituents below one or more detection 
limits in water-resources data sets are not uncommon. 
These values are considered as censored values for sta-
tistical analysis. Concentrations reported as less than a 
detection limit censor the data at the limit of detection 
and relegate all values below the limit to the nominal 
scale. When only a few observations are in the cen-
sored range, either fabricating values at or below the 
censoring threshold or ignoring the values in the cen-
sored range has been done but generally, these prac-
tices are not acceptable. When the response variable is 
moderately censored (below 20 percent censoring), 
Hirsch and others,(1993) recommend the Kendall-
Theil robust regression method (Appendix 2C) or Tobit 
regression (Appendix 2E). When the level of censoring 
exceeds about 20 percent, logistic regression 
(Appendix 2F) or contingency tables (Appendix 2G) 
are recommended (Hirsch and others,1993).

As discussed, multicollinearity will affect the 
results of regression analysis, causing some predictors 
to have a regression coefficient with large standard 
errors as an artifact of regression-equation optimiza-
tion. Large standard error may result in coefficient esti-
mates having the wrong sign or unreasonable values, 
and it generally results in coefficients being insignifi-
cant. When using OLS or GLS regression, one must 
often eliminate some potentially valuable and logical 
predictors from a regression model. A method for deal-
ing with multicollinearity without predictor elimination 
is ridge regression (Hoerl and Kennard, 1970). A suc-
cessful ridge regression analysis (Appendix 2H) pro-
duces slightly biased regressor coefficients with 
smaller variance. Thus, one may trade absence of bias 
for a stable set of regression coefficients in the presence 
of multicollinearity.

Nonlinear Regression Methods

In the previous section, the structure of the 
regression models was assumed to be linear in the pre-
dictor coefficients. In some areas of hydrology, the 
assumption of linearity may represent a distortion of 
the physical process being modeled. In such cases, a 
more theoretically based nonlinear model may be 
appropriate. In other cases, the analyst may wish to 
relax the linearity constraint for a more flexible model 
without knowledge of the form of the model. 

Many regional regression studies relating water 
quality to basin attributes treat contamination sources 
as homogeneously distributed throughout the water-
shed in defining the predictors (basin attributes) 
(Lystrom, and others1978; Peters, 1984; Driver and 
Tasker, 1990). This treatment limits the usefulness of 
the models because it fails to account for spatial differ-
ences between sources and the water-quality monitor-
ing points within a watershed. For example, consider 
the predictor "urban land use (in percent)" for two 
watersheds both with 10 percent urban land use. The 
urban land in one is in the lower part of the basin, 
immediately upstream from the water-quality monitor-
ing point. In the other watershed, the urban land is in 
the upper part of the basin, far from the monitoring 
point. The simple predictor of percent urban land use 
fails to account for loss of contaminant mass during 
instream and overland transport, a factor that may be 
substantially different between the two watersheds. 

Smith and others (1997) deal with this problem 
by developing water-quality predictors for point and 
nonpoint sources as functions of both river reach and 
land-surface attributes, as well as by considering rates 
of material transport. Predictor formulas describe the 
transport of contaminant mass from source to the 
end of a reach. This innovative technique, called 
SPARROW (SPAtially Referenced Regressions On 
Watershed attributes), has the potential for greatly 
improving the usefulness of regional regression models 
for water quality because it is able to include specific 
sources of contaminants and their location relative to 
the stream reach. It includes substantial refinements of 
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a prototype method described in Smith and others 
(1993). Appendix 3A provides a more complete 
description of the method.

Artificial neural networks (ANN) include a class 
of flexible nonlinear models that can be used, like 
regression models, to predict responses from a set of 
predictors. Lingras and Adamo (1996) use ANN to esti-
mate average and peak traffic volumes on the basis of 
road classes and short-duration counts. Zhang and 
Stanley (1997) and Thirumalaiah and Deo (1998) use 
ANN to forecast water quality and river stage on the 
basis of previous time steps, respectively. Artificial 
neural networks attempt to simulate the manner in 
which humans think (Hertz, Krogh, and Palmer, 1991). 
An ANN is composed of simple processing units, 
called neurons, arranged in layers. Each unit receives 
input from other units and converts the input to a single 
output, which it sends to other units. The conversion 
takes place in two stages: first, a net input is computed 
as a weighted sum of inputs, then an activity function 
transforms the net input into an output. The flexibility 
of ANN comes from one's being able to specify multi-
ple layers of neurons with nonlinear activity functions 
and alternative methods for computing the net input. 
Observed values of predictors (inputs) and responses 
(targets) are used to "train" the ANN by iteratively 
adjusting the weights used by the neurons to produce 
output so that the sum of squared differences between 
output and target data is small. 

ANN can over train (fit the observed data well, 
but not predict well for new data). For this reason, one 
should always set aside a portion of the observed data 
as a test data set that is not involved in any way with 
training the ANN, so that the ANN can be tested for 
predictive ability on new data. Just as in linear regres-
sion analysis, omission of important variables or inclu-
sion of unimportant variables can be a problem. 
Artificial neural networks are data-in/predictions-out 
black boxes. Any underlying model or functional rela-
tion may be impossible to extract from the network. 
Appendix 3B gives more details about ANNs. 

UNCERTAINTY, QUALITY 
ASSURANCE, AND QUALITY 
CONTROL

Uncertainty is an important part of any decision-
making process. Success of a water-quality interpretive 
model depends on uncertain future meteorological, 
demographic, political, and technical conditions, all of 
which may affect future costs and benefits. In order to 
deal with problems of external uncertainty, the analyst 
first needs to know the severity of the statistical uncer-
tainty inherent in the methods used to predict water 
quality. Statistical models need to be based on informa-
tion that is meaningful, representative, complete, pre-
cise, accurate, and comparable to be deemed valid, up 
to date, and technically supportable. If sensitivity anal-
yses reveal too much uncertainty in the predictions, 
new data and new methods may be needed, or safety 
factors based on prediction-interval estimates may be 
used. These criteria will also determine whether inter-
pretations based on the model will be admissible as 
legal evidence.

Statisticians must deal with expected and unex-
pected uncertainties that can potentially affect interpre-
tations made from a given data set. Expected 
uncertainty arises because many of the factors that 
affect the process are unknown or cannot be known 
with certainty. Statisticians can often address expected 
uncertainties, but these efforts are usually based on the 
assumption that data are collected and recorded cor-
rectly, thereby minimizing bias. Statistical measures of 
uncertainty are good for determining the level of noise 
(variability) in a data set, but they cannot detect bias 
without a population of "true" values with which to test 
the hypothesis. Unexpected uncertainty can arise from 
faulty computer programs, faulty application of inap-
propriate statistical techniques, and faulty data sets. 
Classical statistical measures cannot detect problems 
caused by unexpected uncertainty because statistical 
analysis is done under the assumption that the calcula-
tions are done correctly, that the correct model has been 
selected for the data, and that the data are representa-
tive of the environmental system under study. Thor-
ough documentation, quality assurance, and quality 
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control are necessary to ensure that bias is not intro-
duced by the errors in the computer programs used for 
analysis, in the modeling effort, and in the data used for 
analysis. Prediction errors arise from natural heteroge-
neity, measurement errors, and structural differences 
between the real world and the methods used for pre-
dictions; therefore, quality-assurance and quality-
control programs must be designed to quantify these 
sources of uncertainty. Quality assurance and quality 
control are necessary throughout any study-from 
design through data entry and interpretation (Jones, 
1999). Increasingly legal and financial liability is 
driving modelers to implement rigorous quality-
assurance and quality-control procedures at all stages 
of a modeling project (Van der Heijde, 1990).

Benchmarking of Analytical Tools

Results generated by the complex computer pro-
grams currently used for statistical analysis often are 
assumed to be correct because it is expected that the 
software companies have thoroughly tested their com-
puter code under a number of different conditions 
(Landwehr and Tasker, 1999).  If statistics that look 
reasonable but are, in fact, grossly incorrect are com-
puted, this dangerous error is liable to remain undetec-
ted until applied to a real-world problem where the 
model noticeably fails. To prevent this situation, one 
can benchmark the statistical software to assess its 
reliability. 

Benchmarking consists of applying a suite of sta-
tistical analyses to various standard data sets for which 
the values of the statistics are known with great preci-
sion and assessing whether the resulting values are in 
conformance. A discussion and review of how to do 
such assessments can be found in Sawizki (1994a) 
and McCullough (1998), who use the Statistical 
Reference Datasets (StRDs) recently published by the 
National Institute of Standards and Technology (1998). 
Wilkinson (1985) also proposed a collection of simple 
tests designed to uncover common flaws in statistical 
programs, including an example in which the variables 
are collinear and the difference in magnitude between 
variables was extreme but the magnitude of the obser-
vations for each variable was not unlike that found 
among common statistical problems.

Benchmarking studies to provide quality assur-
ance and quality control to verify the operation of sta-
tistical software packages sound esoteric; but when 

such studies have been done, real problems have been 
discovered. For example, Sawitzki (1994b) reported on 
a joint effort by members of two working groups 
("Computational Statistics of the International Biomet-
rical Society" and "Statistical Analysis Systems" of the 
"GMDS," Deutsche Gesellschaft für Medizinische 
Informatik, Biometrie und Epidemiologie) to apply the 
Wilkinson tests to nine data-analysis systems, includ-
ing some running on multiple platforms. The group 
demonstrated performance difficulties with each sys-
tem, even between platform implementations of the 
same package.  More recently Landwehr and Tasker 
(1999) completed a benchmark study of commercial 
statistical-software packages commonly used by the 
USGS and found that several analysis packages had 
more difficulty in providing computationally precise 
and (or) correct values than did others, and some were 
cumbersome to use in obtaining specific statistics. 
Therefore, quality assurance and quality control for 
interpretive efforts that make use of existing software 
should include documentation of the commercial soft-
ware (including version and platform), documentation 
of benchmarking efforts, as well as scientific and 
technical reviews of the software selection and 
benchmarking efforts.

In general, the analyst should be aware of the 
specific question or questions to be answered by the 
analysis, as well as how a specific package is comput-
ing the answer it provides (Landwehr and Tasker, 
1999). Quality assurance and quality control (using 
tools such as the ANASTY data set) is especially 
important when an analyst will write computer code to 
implement a statistical process, even if the code is writ-
ten within the interface of an existing commercial 
software product that has been previously bench-
marked. Quality assurance and quality control for code 
development includes verification of the structure and 
coding, model validation, record keeping, software 
documentation, and scientific and technical reviews. 

Uncertainty in Modeling Efforts

Results generated by statistical models may 
appear to be more certain, more precise, and more 
authoritative than they really are because design 
assumptions and results (even realistic ones) can be 
stated with illusive precision and seeming accuracy.  
Models—like scientific theories—cannot truly be vali-
dated; they can only be invalidated when an exception 
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or error is revealed by new data or circumstances. For 
example, Driscoll and others (1990) note that regres-
sion models have been criticized as poor predictors 
when applied beyond the original data set used to 
create the model. The analyst, therefore, has the 
responsibility to document efforts to 

• examine the representativeness of data used to 
construct statistical models,

• assess uncertainties in models, and 
• evaluate the potential predictive ability for sites not 

included in the construction of the model.

The application and documentation of these steps in the 
modeling procedure are essential for the transfer of a 
model to potential model users. Quality assurance and 
quality control in the processes used for data reduction, 
evaluation, and interpretation is as important as quality 
assurance and quality control for field and laboratory 
data-collection efforts (Brown and others, 1991). 
Quality assurance and quality control for modeling 
efforts include the procedural and operational 
framework used by an organization to ensure the 
technical and scientific adequacy of the tasks, and 
documentation thereof, to ensure that the results are 
fully reproducible and defensible. Modeling efforts are 
being used in the regulatory and legal domain, and the 
needs for model documentation describing the inherent 
uncertainty in predictions are increasing (Haan and 
others, 1990). Jones (1999) describes the quality 
assurance and technical review necessary to prepare 
data in a computerized database used to develop water-
quality models.

A number of statistical tools are available to 
assess the uncertainties inherent in models during 
model development. The fit of a regression model is 
usually measured by means of the correlation coeffi-
cient, but a better measure of the model's predictive 
ability at unmonitored stations is the variance of pre-
diction (Gilroy and others, 1990). This statistic is com-
puted by estimating the mean or median variance of 
prediction for individual stations while using every sta-
tion in the regression model. This computation is made 
on the basis of the assumption that the available sta-
tions are representative of the entire population of 
potential sites to be modeled. Irish and others (1996) 
note, however, that the standard error of forecasts (a 
measure of the spread of data points not used to formu-
late a regression model indicating the predictive ability 
of the coefficients in the model for data not included in 
the monitored population) is always larger than the 

standard error of the regression for modeled data. 
When the errors in a regression model are approxi-
mately normally distributed, standard errors of predic-
tion and prediction intervals, which serve as a measure 
of the uncertainty in the predictions, can be computed 
on the basis of normal theory. Appendix 4A provides 
some details. When using methods that do not involve 
the assumption that errors are normal or do not specify 
an error distribution, the analyst may be able to use the 
bootstrap method (Efron and Tibshirani, 1986). The 
bootstrap is a simple, straightforward method for com-
puting biases, standard deviations, and confidence 
intervals for almost any nonparametric problem (Efron, 
1982). More details are given in Appendix 4B. Docu-
menting a sensitivity analysis—determining how input 
parameters control model output—is necessary to indi-
cate how uncertainty in input values will affect uncer-
tainty in computed results. For example, Driver and 
Tasker (1990) provided uncertainty estimates for 
regional regression equations, which had coefficients 
of variation ranging from 0.2 to 0.65, standard errors 
of the estimate ranging from 79 to 145 percent, and 
average prediction errors ranging from -67 to 203 
percent.

When developing a regional hydrologic regres-
sion for a fairly large geographic area, such as a state or 
several states, it is sometimes advantageous to subdi-
vide the region into several homogeneous subregions in 
which the basic regression assumptions are more likely 
to be true than for the whole region. These regions may 
or may not have geographic boundaries. Geographic 
regions may be based on some general topographical 
or geological feature of the region or may be based 
on ecoregions (Omernik, 1995). Regions can also 
be defined on the basis of values of the predictors. 
Multivariate techniques of cluster and discriminant 
analysis have been used to define regions based on 
basin attributes (Tasker, 1982). Another possible 
method for dividing a large area into regions is referred 
to as the "region of influence method" (Tasker and 
Slade, 1994; Tasker and others, 1996) a method in 
which a unique regression equation is estimated for 
each site where a prediction is to be made. The regres-
sion equation is based only on data observed for sites 
with basin characteristics similar to the site where a 
prediction is to be made. Appendix 5 gives more 
details. Many of the characteristics that may be useful 
for regionalizing highway-runoff-quality data (includ-
ing maps of climatic characteristics, receiving-water 
characteristics, and ecoregions) are provided as 
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Geographic Information System (GIS) coverages for 
the conterminous United States by Smieszek and 
Granato (2000). The process of regionalization needs 
to be documented, as well as the regional characteris-
tics, so that practitioners using the model may properly 
assign any given site within an appropriate region.

Proper model application as part of a planning, 
design, or assessment effort also requires substantial 
documentation. Information that should be docu-
mented includes the statistical characteristics and 
design assumptions supporting application of the 
model. Model-performance parameters as defined in 
the previous paragraph should be documented in terms 
of an uncertainty estimate in the predictions made by 
the model when the model is applied. For example, 
Young and others (1996) apply the USGS method 
(Driver and Tasker, 1990) to estimate an annual load of 
suspended solids in a hypothetical case study to illus-
trate use of the method. Young and others (1996) use 
watershed area (one significant figure), land use by 
percent (one significant figure), and the impervious 
area (two significant figures) to compute a storm load 
of 397.4 kg (four significant figures). This storm load 
is then multiplied by the average number of storms 
(two significant figures) to compute an annual load 
of 55,636 kg (five significant figures). Young and 
others (1996) provide the exact results of these hypo-
thetical computations to illustrate the method unambig-
uously. In reality, however, model results are expected 
to have an uncertainty that is compounded by use 
of input values with only one significant figure. 
Computed storm-loads for this hypothetical site are 
about 400 kg per storm with a 90-percent confidence 
interval from about 40 to about 2,000 kg per storm. 
Computed annual-loads for this hypothetical site are 
about 60,000 kg per year with a 90-percent confidence 
interval that ranges from about 6,000 kg to about 
300,000 kg per year. Reporting the final rounded num-
bers and estimates of the uncertainty of the calculations 
provides the information necessary to evaluate the 
potential results from decisions based on these loads.

The analyst should also document an assessment 
of model suitability for site-specific conditions when 
models are applied. Regional regression models are 
designed to provide estimates for the average site with 
characteristics identified by predictor variables. One 
must determine that values of predictor variables for 

the site to be modeled fall within the range of data used 
to construct the models, and that no other distinguish-
ing site characteristics would differentiate the site from 
the modeled population.

Uncertainty in Input Data

The quality of interpretations depends directly 
upon the quality and representativeness of available 
data. Statistical models are empirical models generally 
requiring large amounts of water-quality, land-use, 
and highway-related data for parameter estimation. 
Although a large amount of such data exist in this 
country, the data are in disparate databases and the 
comparability of this data is in doubt. De Vries and 
Klavers (1994) demonstrate that the reliability of mod-
eling estimates is determined primarily by the quality 
of the monitoring strategy and that computation meth-
ods can be much less important than the data incorpo-
rated into a given model. Models, at best, are only as 
good as the uncertainty in the input data (Montgomery 
and Sanders, 1985). Furthermore, there is no guarantee 
that water-quality data, no matter how carefully col-
lected, will be transferable to other areas and other cir-
cumstances (Sonnen, 1983). Harrop (1983) observed 
that the high uncertainty in highway-runoff-quality 
models was caused by "too much analysis being 
applied to too little data." Driscoll and others (1990) 
also noted that even with 31 sites and hundreds of mon-
itored storms, many of the investigated factors—which 
theoretically should affect the quality of runoff—could 
not be quantitatively defined. Specifically, individual 
relations could not be defined because each site had a 
number of explanatory variables (including climate, 
traffic, highway-design features, and surrounding land-
use characteristics) that were not held constant from 
site to site. In other words, it is difficult to develop 
meaningful models to quantitatively predict water qual-
ity from physical or chemical differences between sites 
unless the "noise" introduced by the sampling effort is 
much smaller than the "signal" produced by differences 
between sites. The NURP program recognized that 
interpretation of data would be questionable unless 
field programs at different sites provided consistent and 
sound data. Therefore, quality assurance and quality 
control elements were adopted as integral parts of each 
site/project workplan, including elements to address 
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potential problems with the program, field monitoring 
and sample collection, laboratory analysis, data man-
agement, and data analysis (Athayde and others, 1983).

Standard least-squares methods for regression 
analysis depend on the assumption that the predictors 
are known without error. Nevertheless, measurement 
errors are inherent in most predictors used in regression 
analysis of environmental data. Measurement errors in 
the predictors may or may not be a problem in regional 
regression analyses. The effect of measurement errors 
can be ignored with little consequence when the vari-
ance of the measurement error is very small in relation 
to the variance in the predictor itself. Weisburg (1980), 
Seber (1977), and Davies and Hutton (1975) provide 
more details and methods for determining whether 
measurement errors are small enough to ignore.

When significant measurement errors are in the 
data set of predictors, use of the regional least-squares 
regression for prediction requires the predictions to be 
made by means of the same methods for measuring the 
predictors as used in the determination of the regres-
sion coefficients. For example, consider a regional 
regression in which the response, S, is annual sulfate 
load and predictors P and T are mean annual precipita-
tion and average annual daily traffic flow, respectively. 
In addition, P is estimated from a contour map of the 
region based on 1930–60 data, and T is estimated 
from a regression on a sample short period count 
(Erhunmwunsee, 1991). As long as predictions from 
the regional model are made by use of the same meth-
ods for determining P and T, the measurement errors in 
P and T present little problem. However, if predictions 
from the regional model are made using P estimated 
from a nearby rainfall record or from a different con-
tour map or if T is measured by means of some method 
different from the short-period-count regression, then 
the predictions from the regional least-squares model 
will not be appropriate. It follows that a problem exists 
when the observed predictors used to estimate the 
regression coefficients are measured using significantly 
different methods with different measurement errors. 
For example, consider a regional regression study cov-
ering several states in which each state uses a different 
method to estimate average annual daily traffic flow, T. 
In these cases, it is necessary to adjust the regression 
model for errors in the predictors.  

The problem with using standard least-squares 
methods when measurement errors are in the predictors 
is that the observed predictors will correlate with the 
regression errors, resulting in biased estimates of the 
regression coefficients. An alternative to standard least 
squares that deals with the measurement errors in pre-
dictors is the method of instrumental variables 
(Johnston, 1972). Instrumental variables are variables 
that correlate with the predictor that contains measure-
ment error and but do not correlate with the regression 
errors. Johnston (1972) and Fuller (1987) describe sev-
eral methods for instrumental-variable estimation; 
SAS/ETS procedure MODEL (SAS Institute, 1988) 
can be used for the computations. 

Therefore, to assemble a regional or national 
data set, one must ensure that the methods used to 
define both the predictor (explanatory) and response 
variables are the same, or that the different methods 
will produce results that are neither substantially or sta-
tistically different. Furthermore, it has been demon-
strated that differences in monitoring objectives of past 
studies will affect the suitability of available data for 
inclusion in a regional or national synthesis because the 
monitoring objectives of those studies will affect the 
representativeness of the selected sites when compared 
to the total population of existing sites (Norris and 
others, 1990). This is because local studies are often 
designed for addressing local problems rather than for 
national characterization (Norris and others, 1990).

Availability of reliable runoff-quality data in 
an electronic format is necessary to facilitate future 
use of and interpretation of data collected.  Driscoll 
and others (1990) and Thompson and others (1996) 
indicate the substantial difficulties involved in the 
collection, examination, quality assurance, quality 
control, and (when necessary) data entry of historical 
runoff data in their efforts toward local, regional, and 
national interpretation of highway-runoff data.  In 
comparison, Driver and Tasker (1990) were able to 
assemble a much larger National Urban Runoff 
Program (NURP) data from the USGS and the USEPA 
with less effort because these programs were supported 
by quality-assurance and quality-control measures, 
and the data were stored in readily available national 
water-quality databases.  The Transportation Research 
Board (1997) determined that development of consis-
tent electronic data structures is a primary research 
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need to standardize results of hydraulics, hydrology, 
and water-quality research efforts for future use.  Data-
collection activities, therefore, need be conducted 
within a framework of an established quality-assurance 
and quality-control program to demonstrate that data 
collected meet data-quality objectives and will be 
meaningful for interpretation of the characteristics of 
runoff quantity and quality (Jones, 1999).  Many of the 
criteria for basic information, acceptable uncertainty, 
and quality-assurance and quality-control documenta-
tion described by Granato and others (1998) are essen-
tial for reliable interpretation of local, regional, and 
national runoff-quality data sets.

SUMMARY

     Engineers, planners, economists, regulators, 
and other decision makers concerned with stormwater 
runoff need viable methods for the interpretation of 
local, regional, and national highway-runoff and urban-
stormwater data. Stormwater-quality models have, his-
torically, been used to characterize stormwater flow 
and quality, predict pollutant runoff loads, assess 
impacts on receiving waters, and determine the effec-
tiveness of various best management practices to miti-
gate possible impairment of designated beneficial uses 
of receiving waters.  Valid, current and technically 
defensible stormwater-runoff models are needed to 
interpret data collected by field studies; support exist-
ing highway and urban runoff planning processes, meet 
National Pollutant Discharge Elimination System 
requirements, and provide methods for calculation of 
Total Maximum Daily Loads, in a systematic and 
economical manner.

     Historically, conceptual models, simulation 
models, empirical models, and statistical models of 
varying levels of detail, complexity, and uncertainty 
have been used to meet various data-quality objectives 
in the decision-making processes necessary for the 
planning, design, construction, and maintenance of 
highways and for other land-use applications. Water-
quality simulation models attempt a detailed descrip-
tion of the physical processes and mechanisms by 
means of model parameters with a direct physical defi-
nition, and require as input a considerable degree of 
detail in the description of the physical system.  In sim-
ulation models, parameter estimation is not as data 
dependent as in statistical regional water-quality-
assessment models.  On the other hand, empirical and 

statistical regional water-quality-assessment models 
provide a more general picture of water quality or 
changes in water quality over a region. Statistical 
regional water-quality models may also be used to esti-
mate nonpoint-source loadings as inputs for more 
detailed water-quality simulation models.  All these 
modeling techniques share one common aspect—the 
predictive ability of almost any model will be poor 
without suitable site-specific data for calibration.

     An understanding of the classification of vari-
ables, the unique characteristics of water-resources 
data, and the concept of population structure and analy-
sis is necessary to properly interpret the results of indi-
vidual studies and to combine these results to form 
meaningful interpretations as part of a regional or 
national synthesis of stormwater quality data. Classifi-
cation of variables being used to analyze data may 
determine which statistical methods are appropriate for 
data analysis.  An understanding of the fundamental 
characteristics of water-resources data is necessary to 
evaluate the applicability of various statistical tech-
niques, to interpret the results of these techniques, and 
to use tools and techniques which account for the 
unique nature of water-resources data sets.  Under-
standing the methods and measures used to determine 
the population structure and analyze population charac-
teristics also is necessary to form valid, current, and 
technically defensible stormwater runoff models.

     Regression analysis is an accepted method for 
interpretation of water-resources data and for predic-
tion of current or future conditions at sites that fit the 
input data model.  The Federal Highway Administra-
tion, state departments of transportation, have success-
fully implemented regression models to interpret data; 
identify quantitative relations between constituents; 
predict runoff volumes, concentrations, loads; and pre-
dict potential effects of runoff on receiving waters at 
sites for which data do not exist.  Regression analysis is 
designed to provide an estimate of the average response 
of a system as it relates to variation in one or more 
known variables.   To date, highway- and urban-runoff 
studies have generally been limited to ordinary least 
squares (OLS) and generalized least squares (GLS) 
regression techniques. There are, however, a number of 
linear and nonlinear regression methods that may be 
appropriate for interpretation of local, regional, and 
national highway-runoff and urban-stormwater data 
when the classification of variables and the structure of 
the data violate the design assumptions of the OLS and 
(or) GLS methods.
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     Uncertainty is an important part of any 
decision-making process. Success of a water-quality 
interpretive model depends on uncertain future meteo-
rological, demographic, political, and technical condi-
tions, all of which may affect future costs and benefits.  
In order to deal with uncertainty problems, the analyst 
needs to know the severity of the statistical uncertainty 
of the methods used to predict water quality. Statistical 
models need to be based on information that is mean-
ingful, representative, complete, precise, accurate, and 
comparable to be deemed valid, up to date, and techni-
cally supportable.  If sensitivity analyses reveal too 
much uncertainty in the predictions, new data and new 
methods may be needed, or safety factors based on pre-
diction interval estimates may be used.  To ensure that 
decision makers can assess uncertainty in the analytical 
tools, the modeling methods, and the underlying data 
set, the analyst must document and communicate each 
of these components in an accessible format within 
project publications.  These criteria will also determine 
whether interpretations based on the models developed 
will be admissible in a regulatory framework and (or) 
as legal evidence when necessary.
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APPENDIX 1. Regression Tools





A. Partial Residual Plots

Transformation of predictors in a multiple regression model can be used to achieve linearity and simplify the 
model. A graphical device that can be helpful in deciding on a transformation for a predictor is a partial residual 
plot (Larsen and McCleary, 1972). A partial residual plot for a predictor, xt, in a multiple linear regression is a 
plot of the partial residual, computed by subtracting the effects of all variables except xt, against xt. For example, 
suppose we have the three-variable model

yi = b0 + b1x1,i + b2x2,i + b3x3,i + ei     (i=1, n), (1)

and we wish a partial residual plot for variable x3. The partial residual, (yi-b0-b1x1,i-b2x2,i), is plotted against x3. 
If the plot appears to be linear, then no transformation is needed. If the plot shows some curvature, then a 
transformation may be helpful. This plot is sometimes called a component-plus-residual plot because the partial 
residual, (yi-b0-b1x1,i-b2x2,i), is equal to b3x3i+ei, which is easier to compute.

B. Seasonality

Data may exhibit seasonal patterns. One method for dealing with seasonal patterns is to develop different 
regressions for the different seasons. Barbe and Francis (1995) use this method for coliform concentrations in a 
river in Louisiana. Driscoll and others (1990) classified snowmelt storms separately from rainfall-runoff events, but 
they did not develop seasonality as a quantitative variable in their highway-runoff-quality models. Effects of sea-
sonality sometimes can be reduced by dealing with deviations from seasonal means or by use of periodic functions. 
When a simple periodic function such as a cosine function is used to describe the cyclic variation, the model is 

, (2)

in which ti is a time unit and τ is the cycle length in the same time units. Cycle lengths may be known (such as 
annual cycles, diurnal cycles, or tidal cycles) or may be estimated from the data. Tasker and Burns (1974) use a 
periodic function with estimated cycle lengths to model stream temperatures in New England. Other variables also 
may be included in the model. For example, Cohn and others (1992) use a periodic function to remove seasonality 
from a model to estimate nutrient loading in Chesapeake Bay.

C. Collinearity

Correlation among the predictors in a regression results in near redundancies among the predictors, and 
inferences based on the model can be misleading or erroneous. Multicollinearity is the problem of linear dependen-
cies between predictors. Multicollinearity in a regression can cause prediction problems when predictions are 
extrapolated beyond the sample space of the predictors. When the sample X-space is 3 or more dimensions, it is 
especially difficult to recognize a collinearity problem. 

One diagnostic for detecting possible collinearity problems is the variance inflation factor (VIF). It is 
computed as

, (3)

where Rj is the coefficient of determination from the regression of Xj on the other explanatory variables. A 
guideline for serious multicollinearity problems is VIF > 10. Belsley and others (1980) and Belsley (1991) describe 
other useful methods for detecting multicollinearity. Treatment of the multicollinearity problem depends somewhat 
on the source of the multicollinearity. Sources may be related to the sampling design, constraints on the model, and 
model specification. 
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It is sometimes possible to deal with multicollinearity created by the sampling design by collecting new data 
to fill in sparse areas on the predictor space. For example, consider a regression of sulfate load with two predictors, 
drainage area (A) and percent of basin urbanized (U). If in designing the monitoring network, sites with large A 
tended to have small U and sites with large U tended to have small A, a negative correlation in A and U would 
result. This could be fixed by adding new sites in the network with small A and small U and sites with large A and 
large U.

Multicollinearity problems created by constraints on the model or model specification can sometimes be 
dealt with by redefining the predictors. For example, consider two regressors, drainage area (A) and stream length 
(L). Suppose further that in this region all basins with a large A also have a large L and basins with small A have 
small L, so that A and L are constrained by the population to have a positive correlation. It may be possible to create 
a new dimensionless shape variable, Sh=L2/A, which is not correlated with A or L, which can be substituted for 
either A or L. 

It is also possible to deal with multicollinearity by means of predictor elimination. For example, if predictors 
x1, x2, and x3 exhibit strong multicollinearity, eliminating one of the predictors may reduce the problem greatly. 
Predictor elimination, however, may not be an attractive alternative if the analyst wishes to extract information 
regarding the roles of individual predictors. 

D. Regression Diagnostics

Regression diagnostics are used to identify possible outliers. An analyst can use regression diagnostic meth-
ods to find influential observations and study their effects. Regression diagnostics aid in the systematic location of 
data points that are unusual or are highly influential in estimating regression parameters and standard errors. Diag-
nostics help to avoid misinterpretation of the regression model. Cook and Weisberg (1982; 1984) and Belsley and 
others (1980) give comprehensive treatments of regression diagnostics. Partial regression leverage plots are an 
important part of regression diagnostics. Two commonly used diagnostics, leverage and Cook’s D are briefly 
discussed below.

Observations that are far from the center of the X-variable space are considered high leverage points because 
of their great potential to influence the regression results. The leverage of a point is defined as

hii = xi(X′X)-1x′i . (4)

The limits on hii are (1/n)<hii<1 and

. 

Therefore the average hii= , and a suggested value to identify a point with high leverage, is hii= . Leverage 

plays an important role in the calculation of influence statistics and standardized residuals.

Cook’s D is a measure of the shift in the vector of predicted values of y when the ith observation is not used. 
It shows the influence of the observation on the regression estimates. Computationally, it is obtained as follows

. (5)

A suggested cutoff value to flag influential data points is Di>4/n.
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APPENDIX 2. Linear Regression Methods





A. Linear Ordinary Least-Squares Regression

The linear model for relating a response variable, Y, to p predictors is

Yi = β0 + β1Xi,1 + β2Xi,2 + . . . +βpXi,p + εi. (6)

Subscript i denotes an observation at site i. There are p predictors and p′= (p+1) parameters to be estimated. Let n 
denote the number of observations or sites.

 Denote the following matrices:
Y, a (n x 1) column vector of observed response,
X, a (n x p′) matrix of a column of ones followed by p columns of predictors,
β, is a (p′ x 1) vector of parameters to be estimated, and 
ε, is a (n x 1) column vector of random errors.

The linear model can be written in matrix notation as

Y = Xβ + ε , (7)

in which

The usual assumptions about random vector of errors, ε, is that all the elements, εi, have a common variance, 
σ2,, and are statistically independent. These assumptions can be written in shorthand as

ε∼N(0, Iσ2). (8)

If the model is correct (another assumption), then

Y ~ N(Xβ, Iσ2) . (9)

The regression coefficients, β, are best estimated as

b = (X′X)-1(X′Y) . (10)

The predicted mean of the response variable at site k with basin characteristics xk =(1, xk,1, xk,2, . . ., xk,p) is

=xkb . (11)

The variance of the prediction is Var( ) = σ2[1 + xk(X′X)-1x′k] .
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B. Nonparametric Regression

 

The Kendall-Theil method (Helsel and Hirsch, 1992) is a nonparametric method for fitting a prespecified 
linear equation of the form: 
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.5. Conover (1980) provides a method for estimating a confidence interval for B1. Instead of using the 
median of the pairwise slopes, median (Sij), one can use a weighted median of the slopes with weights proportional 
to the distance between the pairs of points. Birkes and Dodge (1993, p. 114) show that the nonparametric weighted 
median estimator is the value of B1 that minimizes the sum

. (13)

Equation 12 may be generalized to more than one predictor for a multiple regression problem. Nonparamet-
ric estimates of B1, B2, , Bp are found by minimizing the sum

. (14)

An estimate of B0 is obtained as the median of . Birkes and Dodge (1993, p. 123) provide 
iterative procedures to find the values of B1, B2, , Bp.

Regression smooths are nonparametric local averaging methods that require no prespecified model func-
tional form. Three major smoothing methods for problems with one predictor are kernel smoothing, k-nearest 
neighbor (k-NN) smoothing, and splines (Härdle, 1990). Kernel smoothing uses local observations within a band-
width to compute a weighted average defined by the kernel. The k nearest neighbors are used to estimate the local 
weighted average in k-NN smoothing. Splines are piecewise polynomials of order k that are smoothly joined. A 
cubic spline (k=3) is usually good enough for most problems. Average smooths tend to follow outlying points and 
are not particularly robust against outliers. However, one may choose median smooths (Helsel and Hirsch, 1992, p. 
286) or LOWESS (Cleveland, 1979; Helsel and Hirsch, 1992, p. 288) when outliers are perceived to be a problem. 
LOWESS is an iterative procedure that progressively downweights outliers in computing the local weights.

The regression smooths described above are for problems with one predictor. Extending the local averaging 
smooths to problems with multiple predictors raises the problem of sparse data in local neighborhoods. Breiman 
and others (1984) proposed regression trees as a type of nonparametric, multiple-predictor smooth. Regression 
trees define a piecewise constant regression surface based upon neighborhoods defined by hyper-rectangles with 
sides parallel to coordinate axes. Friedman and Stuetzle (1981) describe projection pursuit regression, an extension 
of regression trees, that uses smoothing methods on linear combinations of predictors to form the regression sur-
face. Research is needed to determine whether regression trees and projection pursuit regression would be useful in 
regional water-quality-assessment models.
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C. Robust Regression

Robust regression methods are insensitive to the effects of outliers in the data; they are useful for detecting 
outliers by accentuating observations with large residuals from the robust model. Observations that are down-
weighted in the robust regression model require close examination for the reasons for downweighting. The param-
eter-estimation problem in regression analysis may be thought of as finding the estimates of β to minimize the sum 
of some function, ρ,

, (15)

where z =  and s is a scale factor. 

Robust procedures dampen the effects of outliers and tend to leave large residuals for the outliers. In robust 
estimation, the scale factor, s, must be a robust estimator of scale and not the standard deviation of the residuals 
because the standard deviation is relatively sensitive to outliers. Montgomery and Peck (1982, p. 367) suggest the 
robust estimator 

, (16)

where ei = yi-xiβ.
The least-squares estimator, corresponding to ρ(z)=z2, is sensitive to outliers because it gives relatively 

greater weight to large residuals. On the other hand, the least-absolute-deviation estimator, corresponding to 
ρ(z)=|z|, is resistant to outliers but may give too much weight to small residuals. Huber (1973) proposed a compro-
mise estimator that is robust yet relatively efficient if data are normal. It weights small residuals as a least-squares 
estimator and large residuals as an absolute-deviation estimator. The ρ function for Huber’s estimator is 

, (17)

in which t is a constant usually equal to 2 or less. Parameter estimates are made from iteratively reweighted least 
squares. For example, the weights, w, in a weighted least-squares regression minimizing the sum of the function in 
equation 18 are

. (18)

Because the weights depend on β, iteration is required until little or no changes in the parameters are observed. The 
parameters for many other functions that have been suggested for the robust regression problem (Andrews and 
others, 1972) also can be found by iteratively reweighted least squares.

One problem with robust methods is an apparent lack of agreement among authorities on how best to con-
struct confidence intervals for the parameter estimates. Therefore, one important aspect of statistical regional 
models is not clearly determined for robust regression models.
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D. Generalized Least-Squares Regression

In generalized least-squares (GLS) regression, β is estimated by

 , (19)

in which Λ is the covariance matrix of errors, E(eeT). The operational difficulty with this procedure is that Λ must 
be estimated from the data at hand. Stedinger and Tasker (1985) show that Λ can be estimated as

Λ = γ2I + Σ , (20)

where γ2 is an estimate of the variance of the error inherent in the model, Σ is an estimate of the sampling-error 
covariance matrix, and I is an (n by n) identity matrix. The model error variance, γ2, and regression coefficients, b, 
are found by iteratively searching for the best non-negative solution to the equation

 . (21)

A leverage statistic in GLS analogous to leverage in OLS regression is the ith diagonal element of

H* = X(X′Λ-1X)-1X′Λ-1 . (22)

The sum of the diagonal elements of H* is equal to the number of parameters in the model; and a high-leverage site 
would be one in which the associated diagonal element is greater than 2 times the number of parameters divided by 
the number of observations, as a rule of thumb. A GLS version of Cook’s D is 

 , (23)

where h′ii are diagonal elements of

H′ = X(X′Λ-1X)-1X′ . (24)

D′i is large if it exceeds about (4/n) (Tasker and Stedinger, 1989).
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E. Tobit Regression

The tobit regression model for censored observations is 

 . (25)

If one arbitrarily assumes a value for those observations of y below the threshold and uses the entire sample, or if 
one uses the subsample of observations when yi is greater than the censoring threshold, the least-squares estimator 
of β is biased and inconsistent. However, maximum-likelihood estimators for the tobit regression model are 
available and are described in Judge and others (1985). Liu and others (1996) use tobit regression to predict 
atrazine concentrations in the Midwest. Hirsch and others (1993, p. 17.51) caution that application of tobit 
regression in hydrology is experimental.

F. Logistic Regression

In logistic regression, the response is a nominal variable with two possible values (0 and 1). For example, yi 
is equal to zero if the value is below the detection limit and equal to 1 if the value is above the detection limit. In the 
model, the estimated response, E(y|x), is a proportion between 0 and 1 and is given by

 . (26)

 The unknown β’s are estimated by maximizing the log likelihood function

  (Cox and Snell, 1989). (27)

Teso and others (1996) use logistic regression to estimate probability of pesticide contamination. Major sta-
tistics packages, such as SAS, Minitab, and STATIT, include procedures for fitting the logistic regression function. 
Thus, the logistic regression procedure can be used to estimate the likelihood of a water-quality characteristic being 
above or below a censoring threshold at a site with basin characteristics equal to x.
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G. Contingency Tables

Contingency tables can be used when both response and predictors are nominal or censored. The number of 
observed values falling within a cell defined by the response and predictor groups divided by the total observations 
in a group provides an estimate of the probability of a value being in the cell. If, for example, the effect of traffic 
volume on the potential for detection of cadmium was of interest, then this effect could be examined by use of the 
following (hypothetical) contingency table:

In this hypothetical example, the probability of cadmium being greater than or equal to the detection limit is 
5/20 = 0.25 for rural highways and 20/28 = 0.71 for urban highways. Helsel and Hirsch (1992) and other texts pro-
vide details for statistical analysis using contingency tables.

H. Ridge Regression

The ridge estimator of regression coefficients, β, is

 , (28)

in which constant κ is a biasing parameter to be determined, and Z and yo are standardized versions of X and y, 
respectively. The choice of κ is the subject of several studies. Myers (1986) and Montgomery and Peck (1982) 
describe several methods for choosing κ.

Computations can be made by augmenting the standardized data and using ordinary least-squares methods as 
follows:

 , (29)

where  is a p by p diagonal matrix with diagonal elements equal to the square root of κ and 0 is a p by 1 vector 
of zeros (Montgomery and Peck, 1982). The estimate  is then computed as

. (30)

The use of ridge regression requires thoughtful study of the data and careful analysis, but it can be an effec-
tive method for dealing with multicollinearity problems.

Contingency-table example using hypothetical cadmium concentrations in urban and rural highway runoff

[ADT, Average Daily Traffic; Cd, cadmium concentrations in micrograms per liter; VPD, vehicles per day]

Cadmium
concentrations

Rural highway
(ADT ≤30,000 VPD)

Urban highway 
(ADT>30,000 VPD)

Total

Cd < detection limit ................... A=15 B=8 A+B=23
Cd >detection limit .................... C=5 D=20 C+D=25
Total: .......................................... A+C=20 B+D=28
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APPENDIX 3. Nonlinear Regression Methods





A. SPARROW

In the SPARROW (SPAtially Referenced Regression On Watershed attributes) model (Smith and others, 
1997), the stream network in a region is divided into many stream reaches and the instream load, Li, of a constitu-
ent in a stream reach indexed by i is equal to the sum of contributions to the load from all upstream sources, Sn,i, so 
that

 , (31)

where N is the number of sources. Let J(i) represent the set of all stream reaches upstream from reach i and 
including reach i but downstream from all monitoring stations upstream from reach i. Let K(i) represent the set of 
all monitoring sites directly upstream from reach i. The source terms are determined by

 , (32)

in which βn is a coefficient for source n and  is the predictor for source n and reach i associated with the 

upstream reaches J(i) or monitoring sites K(i). The values for Xn,i,j are given by

 , (33)

where sn,j is a measure of the contaminant mass from source n that is present in reach j or at monitoring site k, the 
α’s are delivery coefficients associated with land-surface characteristics Zi,j, and the δ’s are decay coefficients 
associated with flowpath characteristics Tn,i,j. For point sources or monitoring sites, the α’s are set equal to zero. 
For example, sn,j might be the mass of chlorides placed on the roads within the drainage of reach j or measured at 
monitoring site k; the Z1,j might be average soil permeability for the drainage area of reach j; and T1,i,j might be the 
stream length between reach i and reach j. The predictors are spatially referenced because the contribution from all 
reaches above a given reach is tied to the reach by the flowpath characteristic, Ti,j.

The parameters (β’s, α’s, and δ’s) of this nonlinear regression technique are determined by means of 
SAS/ETS procedure MODEL (SAS Institute, 1988). Smith and others (1997) determine the standard errors of the 
parameters using bootstrap methods (Efron, 1982).

B. Artificial Neural Networks

An artificial neural network, or ANN (Hertz and others, 1991), is composed of simple processing units, 
called neurons, arranged in layers. Each unit receives input from other units and converts the input to a single out-
put, which it sends to other units. The conversion takes place in two stages: first, a net input is computed as a 
weighted sum of inputs, then an activation function transforms the net input into an output. The flexibility of ANN 
comes from the analyst’s being able to specify multiple layers of neurons with nonlinear activation functions and 
alternative methods for computing the net input. A multilayer perceptron (MLP) with three nodes in the input layer, 
three nodes in the hidden layer, and one output node is shown in figure A. The hidden layer is so named because it 
has no direct connection to the outside world. 
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Figure A. Multilayer perceptron illustrating the function of an artificial neural network (ANN).
Each explanatory variable has one input node in the model. Denote the kth input variable as xk and the 
number of hidden nodes as nh. The net input to the jth hidden node is 

 , (34)

where aj and bjk are intercept and weights from input k to hidden node j. The activation function, g(u), for the 
hidden nodes is usually a smooth nonlinear function with a single-valued first derivative, such as the sigmoid 
function, g(u)= , or the hyperbolic tangent function, g(u)=tanh(u). For example, the estimated response, y1, 
for the MLP in figure A with three input nodes, three hidden nodes with a hyperbolic tangent activation function, 
and one output node is

  , (35)

where c1 and d1,j are intercept and weights from hidden node j to output 1. The activation function for the output 
node in this example is the linear function, g(u)=u.

Observed values of predictors (inputs) and responses (targets) are used to train the ANN by iteratively adjust-
ing the weights used by the neurons to produce output so that the sum of squared differences between output and 
target data is small. The method used is called back-propagation with a conjugate gradient training algorithm 
(Hertz and others 1991). Neural Connection 2.0 (SPSS, Inc., 1997) software was used for the calculations. Alterna-
tively, one could estimate the intercepts and weights in equation 35 using nonlinear regression methods (Sarle, 
1994). ANN can overtrain (fit the observed data well, but not predict well for new data). For this reason, a portion 
of the observed data is used as a validation data set that is not used in training the ANN. Artificial neural networks 
are data-in/predictions-out black boxes. Any underlying hydrologic model or hydrologically significant functional 
relation may be impossible to extract from the network.
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APPENDIX 4. Uncertainty Analysis





A. Uncertainty—Normally Distributed Errors

The predicted response at unmonitored site k with basin characteristics x0 =(1, x0,1, x0,2, .., x0,p) is

=x0b . (36)

The standard error of the prediction in OLS regression is

S( )= σ  . (37)

In GLS regression the standard error of prediction is:

 . (38)

A 100(1-α) prediction interval would be

  , (39)

where

 , (40)

and where ta/2, n-p′ is the critical value from a t-distribution for n-p′ degrees of freedom. The use of the t-statistic 
requires the errors to be approximately normally distributed. If a log transformation had been made so that 
y0=log10(q0), then the prediction interval would be

 . (41)

When a log transformation has been made and the standard error in log units follows a normal distribution, 
the standard error may be expressed in percent of the predicted value in the original untransformed units. Denote σ 
as the standard error in log (base 10) units, Sorg as the standard error in original units, and E(q|xk) as the predicted 
value of q, in original units, given xk, and xk =(1, xk,1, xk,2,..., xk,p) is a vector of basin characteristics at site k. The 
standard error in percent, Spercent, is given by

 (Aitcheson and Brown, 1957). (42)

Sometimes it is said in OLS that two-thirds of the points lie within one standard error of estimate of the 
regression function. This is true for the log unit standard error of estimate, σ, but it generally is not correct for Sper-

cent, because the errors in log space are symmetrically distributed under the assumption of normality of the log 
errors, but the errors in original units are skewed. One can, however, calculate a +percent and -percent errors with 
the following formulas:

 and (43)

 . (44)

The three formulas (42, 43, and 44) above apply not only to the standard error of estimate for an OLS regres-
sion but also to the standard error of the model, , in GLS regression, and standard error of a prediction in both 
OLS and GLS.

ŷ0
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B. Uncertainty—Non-Normally Distributed Errors

Consider the general regression model

 , (45)

where g(xi, β) is a function of known form, xi is a vector of known predictors, and β is a vector of unknown 
coefficients. The εi are independent errors drawn from an unspecified distribution, F, centered at zero, that may not 
be normally distributed. Having observed yi for i=1, 2,..., n, β is estimated by minimizing the sum of some function, 
ρ, of the errors

: min  . (46)

Such a model may be too complicated for standard analysis, but a bootstrap method similar to that described below 
can be used.

1. Compute the observed residuals: 

2. Draw a bootstrap sample by randomly selecting, with replacement, from the observed residuals, a bootstrap 
sample of residuals, , compute  and calculate .

3. Repeat step 2 Z times to obtain bootstrap replications .

Let ; then, an estimate of β’s covariance matrix is

. (47)

A nonparametric (1-α) confidence interval for a prediction can be approximated by taking the (1-α) central 
portion of Z predictions based on the bootstrap replications from step 3.
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β̂°mean
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APPENDIX 5. Region of Influence Method





In this method of developing site-specific predictions with a data set spanning a large geographic area, the 
regression equation for a site is computed using data from a unique region called the region of influence by Burn 
(1990a, 1990b) and suggested by Acreman and Wiltshire (1987). The unique subset of monitoring sites that make 
up the region of influence for each prediction site is made up of the Ns nearest neighbors. The method is an 
attractive alternative to the more traditional methods because it can be easily updated by simply updating the water-
quality data in a database file from which the method draws its basic data; furthermore, extrapolation errors tend to 
be small because predictions by definition occur near the center of the space of the predictors. In this method, the 
nearness of two neighbors is not measured by the physical distance between the sites, but rather by a distance 
defined in terms of the watershed characteristics. This distance between any two sites, indexed by i and j, is 
determined by the Euclidean distance metric;

 , (48)

in which, dij is the distance between the watershed characteristics at sites i and j, p is the number of watershed 
characteristics needed to calculate dij, Xk represents the kth watershed characteristic, sd(Xk) is the sample standard 
deviation for Xk, and xik is the value of Xk at the ith site. The dij’s between the prediction site i and all monitoring 
sites j = 1, 2,..., n in a region is determined, and the Ns monitoring sites with smallest dij make up the region of 
influence for site i. For this method to work, the value of Ns should be large enough to have enough degrees of 
freedom in the regression to estimate two or three parameters. The method is computer intensive and requires some 
subjective judgement for selecting Ns and the attributes used in the distance metric.
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